ترغب بنشر مسار تعليمي؟ اضغط هنا

Probing the internal magnetism of stars using asymptotic magneto-asteroseismology

94   0   0.0 ( 0 )
 نشر من قبل Stephane Mathis
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Our knowledge of the dynamics of stars has undergone a revolution thanks to the simultaneous large amount of high-quality photometric observations collected by space-based asteroseismology and ground-based high-precision spectropolarimetry. They allowed us to probe the internal rotation of stars and their surface magnetism in the whole Hertzsprung-Russell diagram. However, new methods should still be developed to probe the deep magnetic fields in those stars. Our goal is to provide seismic diagnoses that allow us to sound the internal magnetism of stars. Here, we focus on asymptotic low-frequency gravity modes and high-frequency acoustic modes. Using a first-order perturbative theory, we derive magnetic splittings of their frequencies as explicit functions of stellar parameters. As in the case of rotation, we show how asymptotic gravity and acoustic modes can allow us to probe the different components of the magnetic field in the cavities where they propagate. This demonstrates again the high potential of using mixed-modes when this is possible.



قيم البحث

اقرأ أيضاً

244 - C. Aerts 2019
Yearslong time series of high-precision brightness measurements have been assembled for thousands of stars with telescopes operating in space. Such data have allowed astronomers to measure the physics of stellar interiors via nonradial oscillations, opening a new avenue to study the stars in the Universe. Asteroseismology, the interpretation of the characteristics of oscillation modes in terms of the physical properties of the stellar interior, brought entirely new insights in how stars rotate and how they build up their chemistry throughout their evolution. Data-driven space asteroseismology delivered a drastic increase in the reliability of computer models mimicking the evolution of stars born with a variety of masses and metallicities. Such models are critical ingredients for modern physics as a whole, because they are used throughout various contemporary and multidisciplinary research fields in space science, including the search for life outside the solar system, archaeological studies of the Milky Way, and the study of single and binary supernova progenitors, among which are future gravitational wave sources. The specific role and potential of asteroseismology for those modern research fields are illustrated. The review concludes with current limitations of asteroseismology and highlights how they can be overcome with ongoing and future large infrastructures for survey astronomy combined with new theoretical research in the era of high-performance computing. This review presents results obtained through major community efforts over the past decade. These breakthroughs were achieved in a collaborative and inclusive spirit that is characteristic of the asteroseismology community. The reviews aim is to make this research field accessible to graduate students and readers coming from other fields of physics, with incentives to join future applications in this domain of astrophysics.
The size of convective cores remains uncertain, despite its substantial influence on stellar evolution, and thus on stellar ages. The seismic modeling of young subgiants can be used to obtain indirect constraints on the core structure during main seq uence, thanks to the high probing potential of mixed modes. We selected the young subgiant KIC10273246, observed by Kepler, based on its mixed-mode properties. We thoroughly modeled this star, with the aim of placing constraints on the size of its main sequence convective core. We first extracted the parameters of the oscillation modes of the star using the full Kepler data set. To overcome the challenges posed by the seismic modeling of subgiants, we proposed a method which is specifically tailored for subgiants with mixed modes and consists in a nested optimization. We then applied this method to perform a detailed seismic modeling of KIC10273246. We obtained models that show good statistical agreements with the observations, both seismic and non-seismic. We showed that including core overshooting in the models significantly improves the quality of the seismic fit, optimal models being found for $alpha_{mathrm{ov}} = 0.15$. Higher amounts of core overshooting strongly worsen the agreement with the observations and are thus firmly ruled out. We also found that having access to two g-dominated mixed modes in young subgiants allows us to place stronger constraints on the gradient of molecular weight in the core and on the central density. This study confirms the high potential of young subgiants with mixed modes to investigate the size of main-sequence convective cores. It paves the way for a more general study including the subgiants observed with Kepler, TESS, and eventually PLATO.
79 - B. Buysschaert , C. Neiner , 2017
Simultaneously and coherently studying the large-scale magnetic field and the stellar pulsations of a massive star provides strong complementary diagnostics suitable for detailed stellar modelling. This hybrid method is called magneto-asteroseismolog y and permits the determination of the internal structure and conditions within magnetic massive pulsators, for example the effect of magnetism on non-standard mixing processes. Here, we overview this technique, its requirements, and list the currently known suitable stars to apply the method.
Context: The internal characteristics of stars, such as their core rotation rates, are obtained via asteroseismic observations. A comparison of core rotation rates found in this way with core rotation rates as predicted by stellar evolution models de monstrate a large discrepancy. This means that there must be a process of angular momentum transport missing in the current theory of stellar evolution. A new formalism was recently proposed to fill in for this missing process, which has the Tayler instability as its starting point (hereafter referred to as `Fuller-formalism). Aims: We investigate the effect of the Fuller-formalism on the internal rotation of stellar models with an initial mass of 2.5 Mo. Methods: Stellar evolution models, including the Fuller-formalism, of intermediate-mass stars were calculated to make a comparison between asteroseismically obtained core rotation rates in the core He burning phase and in the white dwarf phase. Results: Our main results show that models including the Fuller-formalism can match the core rotation rates obtained for the core He burning phases. However, these models are unable to match the rotation rates obtained for white dwarfs. When we exclude the Fuller-formalism at the end of the core He burning phase, the white dwarf rotation rates of the models match the observed rates. Conclusions: We conclude that in the present form, the Fuller-formalism cannot be the sole solution for the missing process of angular momentum transport in intermediate-mass stars.
We present an asteroseismological analysis of four ZZ Ceti stars observed with emph{Kepler}: GD 1212, SDSS J113655.17+040952.6, KIC 11911480 and KIC 4552982, based on a grid of full evolutionary models of DA white dwarf stars. We employ a grid of car bon-oxygen core white dwarfs models, characterized by a detailed and consistent chemical inner profile for the core and the envelope. In addition to the observed periods, we take into account other information from the observational data, as amplitudes, rotational splittings and period spacing, as well as photometry and spectroscopy. For each star, we present an asteroseismological model that closely reproduce their observed properties. The asteroseismological stellar mass and effective temperature of the target stars are (0.632 +/- 0.027 Msun, 10737 +/- 73 K) for GD 1212, (0.745 +/- 0.007 Msun, 11110 +/- 69 K) for KIC 4552982, (0.5480 +/- 0.01 Msun, 12721 +/- 228 K) for KIC1191480 and (0.570 +/- 0.01 Msun, 12060 +/- 300 K) for SDSS J113655.17+040952.6. In general, the asteroseismological values are in good agreement with the spectroscopy. For KIC 11911480 and SDSS J113655.17+040952.6 we derive a similar seismological mass, but the hydrogen envelope is an order of magnitude thinner for SDSS J113655.17+040952.6, that is part of a binary system and went through a common envelope phase.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا