ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamics of a degenerate Cs-Yb mixture with attractive interspecies interactions

175   0   0.0 ( 0 )
 نشر من قبل Kali Wilson
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We probe the collective dynamics of a quantum degenerate Bose-Bose mixture of Cs and $^{174}$Yb with attractive interspecies interactions. Specifically, we excite vertical center of mass oscillations of the Cs condensate, and observe significant damping for the Cs dipole mode, due to the rapid transfer of energy to the larger Yb component, and the ensuing acoustic dissipation. Numerical simulations based on coupled Gross-Pitaevskii equations provide excellent agreement, and additionally reveal the possibility of late-time revivals (beating) which are found to be highly sensitive to the Cs and Yb atom number combinations. By further tuning the interaction strength of Cs using a broad Feshbach resonance, we explore the stability of the degenerate mixture, and observe collapse of the Cs condensate mediated by the attractive Cs-Yb interaction when $a_{mathrm{Cs}}<50 , a_0$, well above the single-species collapse threshold, in good agreement with simulations.

قيم البحث

اقرأ أيضاً

We report on the production of a $^{41}$K-$^{87}$Rb dual-species Bose-Einstein condensate with tunable interspecies interaction and we study the mixture in the attractive regime, i.e. for negative values of the interspecies scattering length $a_{12}$ . The binary condensate is prepared in the ground state and confined in a pure optical trap. We exploit Feshbach resonances for tuning the value of $a_{12}$. After compensating the gravitational sag between the two species with a magnetic field gradient, we drive the mixture into the attractive regime. We let the system to evolve both in free space and in an optical waveguide. In both geometries, for strong attractive interactions, we observe the formation of self-bound states, recognizable as quantum droplets. Our findings prove that robust, long-lived droplet states can be realized in attractive two-species mixtures, despite the two atomic components may experience different potentials.
We report the production of quantum degenerate Bose-Bose mixtures of Cs and Yb with both attractive (Cs + $^{174}$Yb) and repulsive (Cs + $^{170}$Yb) interspecies interactions. Dual-species evaporation is performed in a bichromatic optical dipole tra p that combines light at 1070 nm and 532 nm to enable control of the relative trap depths for Cs and Yb. Maintaining a trap which is shallower for Yb throughout the evaporation leads to highly efficient sympathetic cooling of Cs for both isotopic combinations at magnetic fields close to the Efimov minimum in the Cs three-body recombination rate at around 22 G. For Cs + $^{174}$Yb, we produce quantum mixtures with typical atom numbers of $N_mathrm{Yb} sim 5 times 10^4$ and $N_mathrm{Cs} sim 5 times 10^3$. We find that the attractive interspecies interaction (characterised by the scattering length $a_mathrm{CsYb} = -75,a_0$) is stabilised by the repulsive intraspecies interactions. For Cs + $^{170}$Yb, we produce quantum mixtures with typical atom numbers of $N_mathrm{Yb} sim 4 times 10^4$, and $N_mathrm{Cs} sim 1 times 10^4$. Here, the repulsive interspecies interaction ($a_mathrm{CsYb} = 96,a_0$) can overwhelm the intraspecies interactions, such that the mixture sits in a region of partial miscibility.
228 - Zhichao Guo , Fan Jia , Lintao Li 2021
The beyond-mean-field Lee-Huang-Yang (LHY) correction is ubiquitous in dilute ultracold quantum gases. However, its effects are often elusive due to the typically much larger influence of the mean-field energy. In this work, we study an ultracold mix ture of $^{23}$Na and $^{87}$Rb with tunable attractive interspecies interactions. The LHY effects manifest in the formation of self-bound quantum liquid droplets and the expansion dynamics of the gas-phase sample. A liquid-to-gas phase diagram is obtained by measuring the critical atom numbers below which the self-bound behavior disappears. In stark contrast to trapped gas-phase condensates, the gas-phase mixture formed following the liquid-to-gas phase transition shows an anomalous expansion featuring a larger release energy for increasing mean-field attractions.
We present measurements of interspecies thermalization between ultracold samples of $^{133}$Cs and either $^{174}$Yb or $^{170}$Yb. The two species are trapped in a far-off-resonance optical dipole trap and $^{133}$Cs is sympathetically cooled by Yb. We extract effective interspecies thermalization cross sections by fitting the thermalization measurements to a rate equation model, giving $sigma_{mathrm{Cs^{174}Yb}} = left(5 pm 2right) times 10^{-13} , mathrm{cm^{2}}$ and $sigma_{mathrm{Cs^{170}Yb}} = left(18 pm 8right) times 10^{-13} , mathrm{cm^{2}}$. We perform quantum scattering calculations of the thermalization cross sections and optimize the CsYb interaction potential to reproduce the measurements. We predict scattering lengths for all isotopic combinations of Cs and Yb. We also demonstrate the independent production of $^{174}$Yb and $^{133}$Cs Bose-Einstein condensates using the same optical dipole trap, an important step towards the realization of a quantum-degenerate mixture of the two species.
We observe interspecies Feshbach resonances due to s-wave bound states in ultracold $^{39}$K-$^{133}$Cs scattering for three different spin mixtures. The resonances are observed as joint atom loss and heating of the K sample. We perform least-squares fits to obtain improved K-Cs interaction potentials that reproduce the observed resonances, and carry out coupled-channel calculations to characterize the scattering and bound-state properties for $^{39}$K-Cs, $^{40}$K-Cs and $^{41}$K-Cs. Our results open up the possibilities of tuning interactions in K-Cs atomic mixtures and of producing ultracold KCs molecules.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا