ترغب بنشر مسار تعليمي؟ اضغط هنا

Guidance Module Network for Video Captioning

111   0   0.0 ( 0 )
 نشر من قبل Xiao Zhang
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Video captioning has been a challenging and significant task that describes the content of a video clip in a single sentence. The model of video captioning is usually an encoder-decoder. We find that the normalization of extracted video features can improve the final performance of video captioning. Encoder-decoder model is usually trained using teacher-enforced strategies to make the prediction probability of each word close to a 0-1 distribution and ignore other words. In this paper, we present a novel architecture which introduces a guidance module to encourage the encoder-decoder model to generate words related to the past and future words in a caption. Based on the normalization and guidance module, guidance module net (GMNet) is built. Experimental results on commonly used dataset MSVD show that proposed GMNet can improve the performance of the encoder-decoder model on video captioning tasks.



قيم البحث

اقرأ أيضاً

Inspired by the fact that different modalities in videos carry complementary information, we propose a Multimodal Semantic Attention Network(MSAN), which is a new encoder-decoder framework incorporating multimodal semantic attributes for video captio ning. In the encoding phase, we detect and generate multimodal semantic attributes by formulating it as a multi-label classification problem. Moreover, we add auxiliary classification loss to our model that can obtain more effective visual features and high-level multimodal semantic attribute distributions for sufficient video encoding. In the decoding phase, we extend each weight matrix of the conventional LSTM to an ensemble of attribute-dependent weight matrices, and employ attention mechanism to pay attention to different attributes at each time of the captioning process. We evaluate algorithm on two popular public benchmarks: MSVD and MSR-VTT, achieving competitive results with current state-of-the-art across six evaluation metrics.
123 - Weijiang Yu , Jian Liang , Lei Ji 2021
The task of video-based commonsense captioning aims to generate event-wise captions and meanwhile provide multiple commonsense descriptions (e.g., attribute, effect and intention) about the underlying event in the video. Prior works explore the commo nsense captions by using separate networks for different commonsense types, which is time-consuming and lacks mining the interaction of different commonsense. In this paper, we propose a Hybrid Reasoning Network (HybridNet) to endow the neural networks with the capability of semantic-level reasoning and word-level reasoning. Firstly, we develop multi-commonsense learning for semantic-level reasoning by jointly training different commonsense types in a unified network, which encourages the interaction between the clues of multiple commonsense descriptions, event-wise captions and videos. Then, there are two steps to achieve the word-level reasoning: (1) a memory module records the history predicted sequence from the previous generation processes; (2) a memory-routed multi-head attention (MMHA) module updates the word-level attention maps by incorporating the history information from the memory module into the transformer decoder for word-level reasoning. Moreover, the multimodal features are used to make full use of diverse knowledge for commonsense reasoning. Experiments and abundant analysis on the large-scale Video-to-Commonsense benchmark show that our HybridNet achieves state-of-the-art performance compared with other methods.
Owing to the difficulties of mining spatial-temporal cues, the existing approaches for video salient object detection (VSOD) are limited in understanding complex and noisy scenarios, and often fail in inferring prominent objects. To alleviate such sh ortcomings, we propose a simple yet efficient architecture, termed Guidance and Teaching Network (GTNet), to independently distil effective spatial and temporal cues with implicit guidance and explicit teaching at feature- and decision-level, respectively. To be specific, we (a) introduce a temporal modulator to implicitly bridge features from motion into the appearance branch, which is capable of fusing cross-modal features collaboratively, and (b) utilise motion-guided mask to propagate the explicit cues during the feature aggregation. This novel learning strategy achieves satisfactory results via decoupling the complex spatial-temporal cues and mapping informative cues across different modalities. Extensive experiments on three challenging benchmarks show that the proposed method can run at ~28 fps on a single TITAN Xp GPU and perform competitively against 14 cutting-edge baselines.
Neural module networks (NMN) have achieved success in image-grounded tasks such as Visual Question Answering (VQA) on synthetic images. However, very limited work on NMN has been studied in the video-grounded language tasks. These tasks extend the co mplexity of traditional visual tasks with the additional visual temporal variance. Motivated by recent NMN approaches on image-grounded tasks, we introduce Video-grounded Neural Module Network (VGNMN) to model the information retrieval process in video-grounded language tasks as a pipeline of neural modules. VGNMN first decomposes all language components to explicitly resolve any entity references and detect corresponding action-based inputs from the question. The detected entities and actions are used as parameters to instantiate neural module networks and extract visual cues from the video. Our experiments show that VGNMN can achieve promising performance on two video-grounded language tasks: video QA and video-grounded dialogues.
Due to the rapid emergence of short videos and the requirement for content understanding and creation, the video captioning task has received increasing attention in recent years. In this paper, we convert traditional video captioning task into a new paradigm, ie, Open-book Video Captioning, which generates natural language under the prompts of video-content-relevant sentences, not limited to the video itself. To address the open-book video captioning problem, we propose a novel Retrieve-Copy-Generate network, where a pluggable video-to-text retriever is constructed to retrieve sentences as hints from the training corpus effectively, and a copy-mechanism generator is introduced to extract expressions from multi-retrieved sentences dynamically. The two modules can be trained end-to-end or separately, which is flexible and extensible. Our framework coordinates the conventional retrieval-based methods with orthodox encoder-decoder methods, which can not only draw on the diverse expressions in the retrieved sentences but also generate natural and accurate content of the video. Extensive experiments on several benchmark datasets show that our proposed approach surpasses the state-of-the-art performance, indicating the effectiveness and promising of the proposed paradigm in the task of video captioning.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا