ترغب بنشر مسار تعليمي؟ اضغط هنا

Precipitate strengthening of pyramidal slip in Mg-Zn alloys

64   0   0.0 ( 0 )
 نشر من قبل Javier LLorca
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The mechanical properties of Mg-4wt.% Zn alloy single crystals along the [0001] orientation were measured through micropillar compression at 23C and 100C. Basal slip was dominant in the solution treated alloy, while pyramidal slip occurred in the precipitation hardened alloy. Pyramidal dislocations pass the precipitates by forming Orowan loops, leading to homogeneous deformation and to a strong hardening. The predictions of the yield stress based on the Orowan model were in reasonable agreement with the experimental data. The presence of rod-shape precipitates perpendicular to the basal plane leads to a strong reduction in the plastic anisotropy of Mg.



قيم البحث

اقرأ أيضاً

Precipitation in Mg-Zn alloys was analyzed by means of first principles calculations. Formation energies of symmetrically distinct hcp Mg1-xZnx (0 < x < 1) configurations were determined and potential candidates for Guinier-Preston zones coherent wit h the matrix were identified from the convex hull. The most likely structures were ranked depending on the interface energy along the basal plane. In addition, the formation energy and vibrational entropic contributions of several phases reported experimentally (Mg4Zn7, MgZn2 cubic, MgZn2 hexagonal, Mg21Zn25 and Mg2Zn11) were calculated. The formation energies of Mg4Zn7, MgZn2 cubic, and MgZn2 hexagonal Laves phases were very close because they were formed by different arrangements of rhombohedral and hexagonal lattice units. It was concluded that beta_1^ precipitates were formed by a mixture of all of them. Nevertheless, the differences in the geometrical arrangements led to variations in the entropic energy contributions which determined the high temperature stability. It was found that the MgZn2 hexagonal Laves phase is the most stable phase at high temperature and, thus, beta_1^ precipitates tend to transform into the beta_2^ (MgZn2 hexagonal) precipitates with higher aging temperature or longer aging times. Finally, the equilibrium beta phase (Mg21Zn25) was found to be a long-range order that precipitates the last one on account of the kinetic processes necessary to trigger the transformation from a short-range order phase beta_2^ to beta .
The Mg-Zn and Al-Zn binary alloys have been investigated theoretically under static isotropic pressure. The stable phases of these binaries on both initially hexagonal-close-packed (HCP) and face-centered-cubic (FCC) lattices have been determined by utilizing an iterative approach that uses a configurational cluster expansion method, Monte Carlo search algorithm, and density functional theory (DFT) calculations. Based on 64-atom models, it is shown that the most stable phases of the Mg-Zn binary alloy under ambient condition are $rm MgZn_3$, $rm Mg_{19}Zn_{45}$, $rm MgZn$, and $rm Mg_{34}Zn_{30}$ for the HCP, and $rm MgZn_3$ and $rm MgZn$ for the FCC lattice, whereas the Al-Zn binary is energetically unfavorable throughout the entire composition range for both the HCP and FCC lattices under all conditions. By applying an isotropic pressure in the HCP lattice, $rm Mg_{19}Zn_{45}$ turns into an unstable phase at P$approx$$10$~GPa, a new stable phase $rm Mg_{3}Zn$ appears at P$gtrsim$$20$~GPa, and $rm Mg_{34}Zn_{30}$ becomes unstable for P$gtrsim$$30$~GPa. For FCC lattice, the $rm Mg_{3}Zn$ phase weakly touches the convex hull at P$gtrsim$$20$~GPa while the other stable phases remain intact up to $approx$$120$~GPa. Furthermore, making use of the obtained DFT results, bulk modulus has been computed for several compositions up to pressure values of the order of $approx$$120$~GPa. The findings suggest that one can switch between $rm Mg$-rich and $rm Zn$-rich early-stage clusters simply by applying external pressure. $rm Zn$-rich alloys and precipitates are more favorable in terms of stiffness and stability against external deformation.
117 - Xavier Sauvage 2008
Two different precipitate hardening aluminium alloys processed by friction stir welding were investigated. The microstructure and the hardness of the as delivered materials were compared to that of the weld nugget. Transmission electron microscopy ob servations combined with three-dimensional atom probe analyses clearly show that beta; precipitates dissolved in the nugget of the Al-Mg-Si giving rise to some supersaturated solid solution. It is shown that the dramatic softening of the weld could be partly recovered by post-welding ageing treatments. In the Al-Mg-Sc alloy, Al3Sc precipitate size and density are unchanged in the nugget comparing to the base metal. These precipitates strongly reduce the boundary mobility of recrystallised grains, leading to a grain size in the nugget much smaller than in the Al-Mg-Si alloy. Both coherent and incoherent precipitates were detected. This feature may indicate that a combination of continuous and discontinuous recrystallisation occurred in the weld nugget.
The effect of Ca and Zn in solid solution on the critical resolved shear stress (CRSS) of <a> basal slip, tensile twinning and <c+a> pyramidal slip in Mg alloys has been measured through compression tests on single crystal micropillars with different orientations. The solute atoms increased the CRSS for basal slip to ~ 13.5 MPa, while the CRSS for pyramidal slip was lower than 85 MPa, reducing significantly the plastic anisotropy in comparison with pure Mg. Moreover, the CRSSs for twin nucleation and growth were very similar (~ 37 MPa) and the large value of the CRSS for twin growth hindered the growth of twins during thermo-mechanical processing. Finally, evidence of <a> prismatic slip and cross-slip between basal and prismatic dislocations was found. It is concluded that the reduction of plastic anisotropy, the activation of different slip systems and cross-slip and the weak basal texture promoted by the large CRSS for twin growth are responsible for the improved ductility and formability of Mg-Ca-Zn alloys.
The structural phase transitions and the fundamental band gaps of Mg(x)Zn(1-x)O alloys are investigated by detailed first-principles calculations in the entire range of Mg concentrations x, applying a multiple-scattering theoretical approach (Korring a-Kohn-Rostoker method). Disordered alloys are treated within the coherent potential approximation (CPA). The calculations for various crystal phases have given rise to a phase diagram in good agreement with experiments and other theoretical approaches. The phase transition from the wurtzite to the rock-salt structure is predicted at the Mg concentration of x = 0.33, which is close to the experimental value of 0.33 - 0.40. The size of the fundamental band gap, typically underestimated by the local density approximation, is considerably improved by the self-interaction correction. The increase of the gap upon alloying ZnO with Mg corroborates experimental trends. Our findings are relevant for applications in optical, electrical, and in particular in magnetoelectric devices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا