ترغب بنشر مسار تعليمي؟ اضغط هنا

Perturbed Adaptive Belief Propagation Decoding for High-Density Parity-Check Codes

257   0   0.0 ( 0 )
 نشر من قبل Zilong Liu
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Algebraic codes such as BCH code are receiving renewed interest as their short block lengths and low/no error floors make them attractive for ultra-reliable low-latency communications (URLLC) in 5G wireless networks. This paper aims at enhancing the traditional adaptive belief propagation (ABP) decoding, which is a soft-in-soft-out (SISO) decoding for high-density parity-check (HDPC) algebraic codes, such as Reed-Solomon (RS) codes, Bose-Chaudhuri-Hocquenghem (BCH) codes, and product codes. The key idea of traditional ABP is to sparsify certain columns of the parity-check matrix corresponding to the least reliable bits with small log-likelihood-ratio (LLR) values. This sparsification strategy may not be optimal when some bits have large LLR magnitudes but wrong signs. Motivated by this observation, we propose a Perturbed ABP (P-ABP) to incorporate a small number of unstable bits with large LLRs into the sparsification operation of the parity-check matrix. In addition, we propose to apply partial layered scheduling or hybrid dynamic scheduling to further enhance the performance of P-ABP. Simulation results show that our proposed decoding algorithms lead to improved error correction performances and faster convergence rates than the prior-art ABP variants.



قيم البحث

اقرأ أيضاً

We consider the effect of log-likelihood ratio saturation on belief propagation decoder low-density parity-check codes. Saturation is commonly done in practice and is known to have a significant effect on error floor performance. Our focus is on thre shold analysis and stability of density evolution. We analyze the decoder for standard low-density parity-check code ensembles and show that belief propagation decoding generally degrades gracefully with saturation. Stability of density evolution is, on the other hand, rather strongly effected by saturation and the asymptotic qualitative effect of saturation is similar to reduction by one of variable node degree. We also show under what conditions the block threshold for the saturated belief propagation corresponds with the bit threshold.
A low-density parity-check (LDPC) code is a linear block code described by a sparse parity-check matrix, which can be efficiently represented by a bipartite Tanner graph. The standard iterative decoding algorithm, known as belief propagation, passes messages along the edges of this Tanner graph. Density evolution is an efficient method to analyze the performance of the belief propagation decoding algorithm for a particular LDPC code ensemble, enabling the determination of a decoding threshold. The basic problem addressed in this work is how to optimize the Tanner graph so that the decoding threshold is as large as possible. We introduce a new code optimization technique which involves the search space range which can be thought of as minimizing randomness in differential evolution or limiting the search range in exhaustive search. This technique is applied to the design of good irregular LDPC codes and multiedge type LDPC codes.
We introduce successive cancellation (SC) decoding of product codes (PCs) with single parity-check (SPC) component codes. Recursive formulas are derived, which resemble the SC decoding algorithm of polar codes. We analyze the error probability of SPC -PCs over the binary erasure channel under SC decoding. A bridge with the analysis of PCs introduced by Elias in 1954 is also established. Furthermore, bounds on the block error probability under SC decoding are provided, and compared to the bounds under the original decoding algorithm proposed by Elias. It is shown that SC decoding of SPC-PCs achieves a lower block error probability than Elias decoding.
114 - Jingwei Xu , Tiben Che , Gwan Choi 2015
This paper presents a novel propagation (BP) based decoding algorithm for polar codes. The proposed algorithm facilitates belief propagation by utilizing the specific constituent codes that exist in the factor graph, which results in an express journ ey (XJ) for belief information to propagate in each decoding iteration. In addition, this XJ-BP decoder employs a novel round-trip message passing scheduling method for the increased efficiency. The proposed method simplifies min-sum (MS) BP decoder by 40.6%. Along with the round-trip scheduling, the XJ-BP algorithm reduces the computational complexity of MS BP decoding by 90.4%; this enables an energy-efficient hardware implementation of BP decoding in practice.
A product code with single parity-check component codes can be described via the tools of a multi-kernel polar code, where the rows of the generator matrix are chosen according to the constraints imposed by the product code construction. Following th is observation, successive cancellation decoding of such codes is introduced. In particular, the error probability of single parity-check product codes over binary memoryless symmetric channels under successive cancellation decoding is characterized. A bridge with the analysis of product codes introduced by Elias is also established for the binary erasure channel. Successive cancellation list decoding of single parity-check product codes is then described. For the provided example, simulations over the binary input additive white Gaussian channel show that successive cancellation list decoding outperforms belief propagation decoding applied to the code graph. Finally, the performance of the concatenation of a product code with a high-rate outer code is investigated via distance spectrum analysis. Examples of concatenations performing within $0.7$ dB from the random coding union bound are provided.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا