ﻻ يوجد ملخص باللغة العربية
We applied a relativistic configuration-interaction (CI) framework to the stabilization method as an approach for obtaining the autoionization resonance structure of heliumlike ions. In this method, the ion is confined within an impenetrable spherical cavity, the size of which determines the radial space available for electron wavefunctions and electron-electron interactions. By varying the size of the cavity, one can obtain the autoionization resonance position and width. The applicability of this method is tested on the resonances of He atom while comparing with benchmark data available in the literature. The present method is further applied to the determination of the resonance structure of heliumlike uranium ion, where a relativistic framework is mandatory. In the strong-confinement region, the present method can be useful to simulate the properties of an atom or ion under extreme pressure. An exemplary application of the present method to determine the structure of ions embedded in a dense plasma environment is briefly discussed.
Energies and Auger widths of the $LL$ resonances in He-like ions from boron to argon are evaluated by means of a complex scaled configuration-interaction approach within the framework of the Dirac-Coulomb-Breit Hamiltonian. The nuclear recoil and QED
In a previous paper we proposed a Projected Configuration Interaction method that uses sets of axially deformed single particle states to build up the many body basis. We show that the choice of the basis set is essential for the efficiency of the me
We extend the recently proposed heat-bath configuration interaction (HCI) method [Holmes, Tubman, Umrigar, J. Chem. Theory Comput. 12, 3674 (2016)], by introducing a semistochastic algorithm for performing multireference Epstein-Nesbet perturbation t
We investigate the excitation of the 5D_{5/2} level in Rb atoms using counter-propagating laser beams, which are nearly resonant to the one-photon 5S_{1/2} - 5P_{3/2} and 5P_{3/2} - 5D_{5/2} transitions, ensuring that a sum of the optical frequencies
The critical nuclear charge Zc required for a heliumlike atom to have at least one bound state was recently determined with high accuracy from variational calculations. Analysis of the wave functions further suggested that the bound state changes smo