ﻻ يوجد ملخص باللغة العربية
In this work, a system for creating a relightable 3D portrait of a human head is presented. Our neural pipeline operates on a sequence of frames captured by a smartphone camera with the flash blinking (flash-no flash sequence). A coarse point cloud reconstructed via structure-from-motion software and multi-view denoising is then used as a geometric proxy. Afterwards, a deep rendering network is trained to regress dense albedo, normals, and environmental lighting maps for arbitrary new viewpoints. Effectively, the proxy geometry and the rendering network constitute a relightable 3D portrait model, that can be synthesized from an arbitrary viewpoint and under arbitrary lighting, e.g. directional light, point light, or an environment map. The model is fitted to the sequence of frames with human face-specific priors that enforce the plausibility of albedo-lighting decomposition and operates at the interactive frame rate. We evaluate the performance of the method under varying lighting conditions and at the extrapolated viewpoints and compare with existing relighting methods.
Photo-realistic facial video portrait reenactment benefits virtual production and numerous VR/AR experiences. The task remains challenging as the portrait should maintain high realism and consistency with the target environment. In this paper, we pre
We present a novel approach that enables photo-realistic re-animation of portrait videos using only an input video. In contrast to existing approaches that are restricted to manipulations of facial expressions only, we are the first to transfer the f
Photorealistic editing of portraits is a challenging task as humans are very sensitive to inconsistencies in faces. We present an approach for high-quality intuitive editing of the camera viewpoint and scene illumination in a portrait image. This req
In this paper, we propose an efficient method for robust 3D self-portraits using a single RGBD camera. Benefiting from the proposed PIFusion and lightweight bundle adjustment algorithm, our method can generate detailed 3D self-portraits in seconds an
We present a learning-based technique for estimating high dynamic range (HDR), omnidirectional illumination from a single low dynamic range (LDR) portrait image captured under arbitrary indoor or outdoor lighting conditions. We train our model using