ﻻ يوجد ملخص باللغة العربية
A conjecture of Burns and Knieper asks whether a 2-plane with a metric without conjugate points, and with a geodesic foliation whose lines are at bounded Hausdorff distance, is necessarily flat. We prove this conjecture in two cases: under the hypothesis that the plane admits total curvature, and under the hypothesis of visibility at some point. Along the way, we show that all geodesic line foliations on a Riemannian 2-plane must be homeomorphic to the standard one.
A leafwise Hodge decomposition was proved by Sanguiao for Riemannian foliations of bounded geometry. Its proof is explained again in terms of our study of bounded geometry for Riemannian foliations. It is used to associate smoothing operators to foli
We show that a Riemannian foliation on a topological $n$-sphere has leaf dimension 1 or 3 unless n=15 and the Riemannian foliation is given by the fibers of a Riemannian submersion to an 8-dimensional sphere. This allows us to classify Riemannian foliations on round spheres up to metric congruence.
We prove that an isometric action of a Lie group on a Riemannian manifold admits a resolution preserving the transverse geometry if and only if the action is infinitesimally polar. We provide applications concerning topological simplicity of several
{em Riemannian cubics} are curves in a manifold $M$ that satisfy a variational condition appropriate for interpolation problems. When $M$ is the rotation group SO(3), Riemannian cubics are track-summands of {em Riemannian cubic splines}, used for mot
We present a new link between the Invariant Theory of infinitesimal singular Riemannian foliations and Jordan algebras. This, together with an inhomogeneous version of Weyls First Fundamental Theorems, provides a characterization of the recently disc