ترغب بنشر مسار تعليمي؟ اضغط هنا

Infinite Nature: Perpetual View Generation of Natural Scenes from a Single Image

75   0   0.0 ( 0 )
 نشر من قبل Andrew Liu
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We introduce the problem of perpetual view generation - long-range generation of novel views corresponding to an arbitrarily long camera trajectory given a single image. This is a challenging problem that goes far beyond the capabilities of current view synthesis methods, which quickly degenerate when presented with large camera motions. Methods for video generation also have limited ability to produce long sequences and are often agnostic to scene geometry. We take a hybrid approach that integrates both geometry and image synthesis in an iterative `emph{render}, emph{refine} and emph{repeat} framework, allowing for long-range generation that cover large distances after hundreds of frames. Our approach can be trained from a set of monocular video sequences. We propose a dataset of aerial footage of coastal scenes, and compare our method with recent view synthesis and conditional video generation baselines, showing that it can generate plausible scenes for much longer time horizons over large camera trajectories compared to existing methods. Project page at https://infinite-nature.github.io/.

قيم البحث

اقرأ أيضاً

Taking an image of an object is at its core a lossy process. The rich information about the three-dimensional structure of the world is flattened to an image plane and decisions such as viewpoint and camera parameters are final and not easily reverti ble. As a consequence, possibilities of changing viewpoint are limited. Given a single image depicting an object, novel-view synthesis is the task of generating new images that render the object from a different viewpoint than the one given. The main difficulty is to synthesize the parts that are disoccluded; disocclusion occurs when parts of an object are hidden by the object itself under a specific viewpoint. In this work, we show how to improve novel-view synthesis by making use of the correlations observed in 3D models and applying them to new image instances. We propose a technique to use the structural information extracted from a 3D model that matches the image object in terms of viewpoint and shape. For the latter part, we propose an efficient 2D-to-3D alignment method that associates precisely the image appearance with the 3D model geometry with minimal user interaction. Our technique is able to simulate plausible viewpoint changes for a variety of object classes within seconds. Additionally, we show that our synthesized images can be used as additional training data that improves the performance of standard object detectors.
We present a method for estimating neural scenes representations of objects given only a single image. The core of our method is the estimation of a geometric scaffold for the object and its use as a guide for the reconstruction of the underlying rad iance field. Our formulation is based on a generative process that first maps a latent code to a voxelized shape, and then renders it to an image, with the object appearance being controlled by a second latent code. During inference, we optimize both the latent codes and the networks to fit a test image of a new object. The explicit disentanglement of shape and appearance allows our model to be fine-tuned given a single image. We can then render new views in a geometrically consistent manner and they represent faithfully the input object. Additionally, our method is able to generalize to images outside of the training domain (more realistic renderings and even real photographs). Finally, the inferred geometric scaffold is itself an accurate estimate of the objects 3D shape. We demonstrate in several experiments the effectiveness of our approach in both synthetic and real images.
Many images shared over the web include overlaid objects, or visual motifs, such as text, symbols or drawings, which add a description or decoration to the image. For example, decorative text that specifies where the image was taken, repeatedly appea rs across a variety of different images. Often, the reoccurring visual motif, is semantically similar, yet, differs in location, style and content (e.g. text placement, font and letters). This work proposes a deep learning based technique for blind removal of such objects. In the blind setting, the location and exact geometry of the motif are unknown. Our approach simultaneously estimates which pixels contain the visual motif, and synthesizes the underlying latent image. It is applied to a single input image, without any user assistance in specifying the location of the motif, achieving state-of-the-art results for blind removal of both opaque and semi-transparent visual motifs.
158 - Kai-En Lin , Lei Xiao , Feng Liu 2021
Image view synthesis has seen great success in reconstructing photorealistic visuals, thanks to deep learning and various novel representations. The next key step in immersive virtual experiences is view synthesis of dynamic scenes. However, several challenges exist due to the lack of high-quality training datasets, and the additional time dimension for videos of dynamic scenes. To address this issue, we introduce a multi-view video dataset, captured with a custom 10-camera rig in 120FPS. The dataset contains 96 high-quality scenes showing various visual effects and human interactions in outdoor scenes. We develop a new algorithm, Deep 3D Mask Volume, which enables temporally-stable view extrapolation from binocular videos of dynamic scenes, captured by static cameras. Our algorithm addresses the temporal inconsistency of disocclusions by identifying the error-prone areas with a 3D mask volume, and replaces them with static background observed throughout the video. Our method enables manipulation in 3D space as opposed to simple 2D masks, We demonstrate better temporal stability than frame-by-frame static view synthesis methods, or those that use 2D masks. The resulting view synthesis videos show minimal flickering artifacts and allow for larger translational movements.
Single-image-based view generation (SIVG) is important for producing 3D stereoscopic content. Here, handling different spatial resolutions as input and optimizing both reconstruction accuracy and processing speed is desirable. Latest approaches are b ased on convolutional neural network (CNN), and they generate promising results. However, their use of fully connected layers as well as pre-trained VGG forces a compromise between reconstruction accuracy and processing speed. In addition, this approach is limited to the use of a specific spatial resolution. To remedy these problems, we propose exploiting fully convolutional networks (FCN) for SIVG. We present two FCN architectures for SIVG. The first one is based on combination of an FCN and a view-rendering network called DeepView$_{ren}$. The second one consists of decoupled networks for luminance and chrominance signals, denoted by DeepView$_{dec}$. To train our solutions we present a large dataset of 2M stereoscopic images. Results show that both of our architectures improve accuracy and speed over the state of the art. DeepView$_{ren}$ generates competitive accuracy to the state of the art, however, with the fastest processing speed of all. That is x5 times faster speed and x24 times lower memory consumption compared to the state of the art. DeepView$_{dec}$ has much higher accuracy, but with x2.5 times faster speed and x12 times lower memory consumption. We evaluated our approach with both objective and subjective studies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا