ترغب بنشر مسار تعليمي؟ اضغط هنا

Searching for Lepton Flavour (Universality) Violation and Collider Signals from a Singly-Charged Scalar Singlet

331   0   0.0 ( 0 )
 نشر من قبل Claudio Andrea Manzari
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In recent years, evidence for lepton flavour universality violation beyond the Standard Model has been accumulated. In this context, a singly charged $SU(2)_L$ singlet scalar ($phi^pm$) is very interesting, as it can only have flavour off-diagonal couplings to neutrinos and charged leptons, therefore necessarily violating lepton flavour (universality). In fact, it gives a (necessarily constructive) tree-level effect in $elltoell^prime u u$ processes, while contributing to charged lepton flavour violating only at the loop-level. Therefore, it can provide a common explanation of the hints for new physics in $tautomu u u/tau(mu)to e u u$ and of the Cabibbo Angle Anomaly. Such an explanation predicts ${rm Br }[tauto egamma]$ to be of the order of a few times $10^{-11}$ while ${ rm Br}[tauto emumu]$ can be of the order of $10^{-9}$ for order one couplings and therefore in the reach of forthcoming experiments. Furthermore, we derive a {novel} coupling-independent lower limit on the scalar mass of $approx 200,$GeV by recasting LHC slepton searches. In the scenario preferred by low energy precision data, the lower limit is even strengthened to $approx300,$GeV, showing the complementary between LHC searches and flavour observables. Furthermore, we point out that this model can be tested by reinterpreting DM mono-photon searches at future $e^+e^-$ colliders.

قيم البحث

اقرأ أيضاً

310 - Fiona Kirk 2021
The singly charged $SU(2)_L$ singlet scalar, with its necessarily flavour violating couplings to leptons, lends itself particularly well for an explanation of the Cabibbo Angle Anomaly and of hints for lepton flavour universality violation in $tau to mubar u u$. In a setup addressing both anomalies, we predict loop-induced effects in $tauto egamma$ and in $tau to emumu$. A recast of ATLAS selectron and smuon searches allows us to derive a coupling-independent lower limit of $approx 200$ GeV on the mass of the singly charged singlet scalar. At a future $e^+e^-$ collider, dark matter mono-photon searches could provide a complementary set of bounds.
A weak singlet charged scalar exists in many new physics models beyond the Standard Model. The discovery potential of the singlet charged scalar is explored at future lepton colliders, e.g. the CEPC, ILC-350 and ILC-500. We demonstrate that one can d iscover the singlet charged scalar up to 118 GeV at the CEPC with an integrated luminosity of $5~mathrm{ab}^{-1}$. At the ILC-350 and the ILC-500 with an integrated luminosity of $1~mathrm{ab}^{-1}$ such a discovery limit can be further improved to 136 GeV and 160 GeV, respectively.
66 - Andreas Crivellin 2016
Several experiments observed deviations from the Standard Model (SM) in the flavour sector: LHCb found a $4-5,sigma$ discrepancy compared to the SM in $bto smu^+mu^-$ transitions (recently supported by an Belle analysis) and CMS reported a non-zero m easurement of $htomutau$ with a significance of $2.4,sigma$. Furthermore, BELLE, BABAR and LHCb founds hints for the violation of flavour universality in $Bto D^{(*)}tau u$. In addition, there is the long-standing discrepancy in the anomalous magnetic moment of the muon. Interestingly, all these anomalies are related to muons and taus, while the corresponding electron channels seem to be SM like. This suggests that these deviations from the SM might be correlated and we briefly review some selected models providing simultaneous explanations.
Weak singlet charged scalar exists in many new physics models beyond the Standard Model. In this work we show that a light singlet charged scalar with mass above 65~GeV is still allowed by the LEP and LHC data. The interactions of the singlet charged scalar with the Standard Model particles are described by operators up to dimension-5. Dominant decay modes of the singlet charged scalar are obtained, and a subtlety involving field redefinition and gauge fixing due to a dimension-5 operator is also clarified. We demonstrate that it is promising to observe the singlet charged scalar at the LHC.
We consider a two-Higgs-doublet extension of the Standard Model, with three right-handed neutrino singlets and the seesaw mechanism, wherein all the Yukawa-coupling matrices are lepton flavour-diagonal and lepton flavour violation is soft, originatin g solely in the non-flavour-diagonal Majorana mass matrix of the right-handed neutrinos. We consider the limit $m_R to infty$ of this model, where $m_R$ is the seesaw scale. We demonstrate that there is a region in parameter space where the branching ratios of all five charged-lepton decays $ell_1^- to ell_2^- ell_3^+ ell_3^-$ are close to their experimental upper bounds, while the radiative decays $ell_1^- to ell_2^- gamma$ are invisible because their branching ratios are suppressed by $m_R^{-4}$. We also consider the anomalous magnetic moment of the muon and show that in our model the contributions from the extra scalars, both charged and neutral, can remove the discrepancy between its experimental and theoretical values.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا