ترغب بنشر مسار تعليمي؟ اضغط هنا

Parabolic Harnack estimates for anisotropic slow diffusion

115   0   0.0 ( 0 )
 نشر من قبل Sunra Mosconi J.N.
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We prove a Harnack inequality for positive solutions of a parabolic equation with slow anisotropic spatial diffusion. After identifying its natural scalings, we reduce the problem to a Fokker-Planck equation and construct a self-similar Barenblatt solution. We exploit translation invariance to obtain positivity near the origin via a self-iteration method and deduce a sharp anisotropic expansion of positivity. This eventually yields a scale invariant Harnack inequality in an anisotropic geometry dictated by the speed of the diffusion coefficients. As a corollary, we infer Holder continuity, an elliptic Harnack inequality and a Liouville theorem.



قيم البحث

اقرأ أيضاً

We give a proof of Holder continuity for bounded local weak solutions to the equation $u_t= sum_{i=1}^N (|u_{x_i}|^{p_i-2} u_{x_i})_{x_i}$, in $Omega times [0,T]$, with $Omega subset subset mathbb{R}^N$, under the condition $ 2<p_i<bar{p}(1+2/N)$ f or each $i=1,..,N$, being $bar{p}$ the harmonic mean of the $p_i$s, via recently discovered intrinsic Harnack estimates. Moreover we establish equivalent forms of these Harnack estimates within the proper intrinsic geometry.
256 - Paul W. Y. Lee 2015
We prove matrix and scalar differential Harnack inequalities for linear parabolic equations on Riemannian and Kahler manifolds.
We investigate the parabolic Boundary Harnack Principle for both divergence and non-divergence type operators by the analytical methods we developed in the elliptic context. Besides the classical case, we deal with less regular space-time domains, including slit domains.
238 - Seick Kim , Soojung Kim , 2012
We consider second-order linear parabolic operators in non-divergence form that are intrinsically defined on Riemannian manifolds. In the elliptic case, Cabre proved a global Krylov-Safonov Harnack inequality under the assumption that the sectional c urvature of the underlying manifold is nonnegative. Later, Kim improved Cabres result by replacing the curvature condition by a certain condition on the distance function. Assuming essentially the same condition introduced by Kim, we establish Krylov-Safonov Harnack inequality for nonnegative solutions of the non-divergent parabolic equation. This, in particular, gives a new proof for Li-Yau Harnack inequality for positive solutions to the heat equation in a manifold with nonnegative Ricci curvature.
In this note we consider problems related to parabolic partial differential equations in geodesic metric measure spaces, that are equipped with a doubling measure and a Poincare inequality. We prove a location and scale invariant Harnack inequality f or a minimizer of a variational problem related to a doubly non-linear parabolic equation involving the p-Laplacian. Moreover, we prove the sufficiency of the Grigoryan--Saloff-Coste theorem for general p > 1 in geodesic metric spaces. The approach used is strictly variational, and hence we are able to carry out the argument in the metric setting.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا