ﻻ يوجد ملخص باللغة العربية
The SPIRAL1 charge breeder is now under operation. Radioactive beam has already been delivered [1] to Physicist for performing experiment. Although charge breeding efficiencies demonstrated high performances for stable ion beams, those efficiencies regarding radioactive ion beams were found, in the first experiments, lower than expected. The beam optics, prior to the injection of the 1+ ions into the SPIRAL1 charge breeder, is of prime importance [2] for getting such high efficiencies. Moreover, the intensities of the radioactive ion beams are so low, that it is really difficult to tune the charge breeder. The tuning of the charge breeder for radioactive ion beams requires a particular procedure often referred as blind tuning. A stable beam hav-ing a close Brho (few percent) is required to find out the set of optic parameters preceding the tuning of the radioactive beam. Hence, it has been decided to focus our effort on that procedure as to get control of the 1+ beam optics leading to high charge breeding efficiencies whatever the 1+ mass, energy and Target Ion Source System (TISS) used. Being aware that each TISS provide ion beams with a specific energy spread DeltaE, and given that the acceptance energy win-dow of the charge breeder is rather narrow; that parameter must play also an important role in the whole charge breed-ing efficiency.
A new method for determining plasma parameters from beam current transients resulting from short pulse 1+ injection into a Charge Breeder Electron Cyclotron Resonance Ion Source (CB-ECRIS) has been developed. The proposed method relies on few assumpt
A new beam injection scheme is proposed for the Fermilab Booster to increase beam brightness. The beam is injected on the deceleration part of the sinusoidal magnetic ramp and capture is started immediately after the injection. During the entire capt
Over the past decade, Fermilab has focused efforts on the intensity frontier physics and is committed to increase the average beam power delivered to the neutrino and muon programs substantially. Many upgrades to the existing injector accelerators, n
The proposal of generating high quality electron bunches via ionization injection triggered by an counter propagating laser pulse inside a beam driven plasma wake is examined via two-dimensional particle-in-cell simulations. It is shown that electron
We use beam position measurements over the first part of the AWAKE electron beamline, together with beamline modeling, to deduce the beam average momentum and to predict the beam position in the second part of the beamline. Results show that using on