ترغب بنشر مسار تعليمي؟ اضغط هنا

High pressure computational search of trivalent lanthanide di-nitrides

351   0   0.0 ( 0 )
 نشر من قبل Davide Ceresoli
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Transition metal nitrides have attracted much interest of the scientific community for their intriguing properties and technological applications. Here we focus on yttrium dinitride (YN$_{2}$) and its formation and structural transition under pressure. We employed a fixed composition USPEX search to find the most stable polymorphs. We choose yttrium as a proxy for the lanthanide series because it has only $+3$ oxidation state, contrary to most transition metals. We then computed thermodynamic and dynamical stability of these structures compared to the decomposition reactions and we found that the compound undergoes two structural transitions, the latter showing the formation N$_{4}$ chains. A closer look into the nature of the nitrogen bonding showed that in the first two structures, where nitrogen forms dimers, the bond length is intermediate between that of a single bond and that of a double bond, making it hard to rationalize the proper oxidation state configuration for YN$_{2}$. In the latter structure where there is the formation of N$_{4}$ chains, the bond lengths increase significantly, up to a value that can be justified as a single bond. Finally, we also studied the electronic structure and the dynamical stability of the structures we found.



قيم البحث

اقرأ أيضاً

125 - Sam Azadi , , Thomas D. Kuhne 2016
We use the diffusion quantum Monte Carlo to revisit the enthalpy-pressure phase diagram of the various products from the different proposed decompositions of H$_2$S at pressures above 150~GPa. Our results entails a revision of the ground-state enthal py-pressure phase diagram. Specifically, we find that the C2/c HS$_2$ structure is persistent up to 440~GPa before undergoing a phase transition into the C2/m phase. Contrary to density functional theory, our calculations suggest that the C2/m phase of HS is more stable than the I4$_1$/amd HS structure over the whole pressure range from 150 to 400 GPa. Moreover, we predict that the Im-3m phase is the most likely candidate for H$_3$S, which is consistent with recent experimental x-ray diffraction measurements.
We investigate the van der Waals interactions in solid molecular hydrogen structures. We calculate enthalpy and the Gibbs free energy to obtain zero and finite temperature phase diagrams, respectively. We employ density functional theory (DFT) to cal culate the electronic structure and Density functional perturbation theory (DFPT) with van der Waals (vdW) functionals to obtain phonon spectra. We focus on the solid molecular $C2/c$, $Cmca$-12, $P6_3/m$, $Cmca$, and $Pbcn$ structures within the pressure range of 200 $<$ P $<$ 450 GPa. We propose two structures of the $C2/c$ and $Pbcn$ for phase III which are stabilized within different pressure range above 200 GPa. We find that vdW functionals have a big effect on vibrations and finite-temperature phase stability, however, different vdW functionals have different effects. We conclude that, in addition to the vdW interaction, a correct treatment of the high charge gradient limit is essential. We show that the dependence of molecular bond-lengths on exchange-correlation also has a considerable influence on the calculated metallization pressure, introducing errors of up to 100GPa.
When monoclinic monazite-type LaVO4 (space group P21/n) is squeezed up to 12 GPa at room temperature, a phase transition to another monoclinic phase has been found. The structure of the high-pressure phase of LaVO4 is indexed with the same space grou p (P21/n), but with a larger unit-cell in which the number of atoms is doubled. The transition leads to an 8% increase in the density of LaVO4. The occurrence of such a transition has been determined by x-ray diffraction, Raman spectroscopy, and ab initio calculations. The combination of the three techniques allows us to also characterize accurately the pressure evolution of unit-cell parameters and the Raman (and IR)-active phonons of the low- and high-pressure phase. In particular, room-temperature equations of state have been determined. The changes driven by pressure in the crystal structure induce sharp modifications in the color of LaVO4 crystals, suggesting that behind the monoclinic-to-monoclinic transition there are important changes of the electronic properties of LaVO4.
Layered Li(Ni,Mn,Co,)O$_2$ (NMC) presents an intriguing ternary alloy design space for optimization as a cathode material in Li-ion batteries. Recently, the high cost and resource limitations of Co have added a new design constraint and high Ni-conta ining NMC alloys have gained enormous attention despite possible performance trade-offs. It is not fully understood if this material space is a disordered solid solution at room temperature and any arbitrary combination can be used or if there exist distinct transition metal orderings to which meta-stable solid solutions will decay during cycling and affect performance. Here, we present a high fidelity computational search of the ternary phase diagram with an emphasis on high-Ni, and thus low Co, containing compositional phases to understand the room temperature stability of the ordered and disordered solid solution phases. This is done through the use of density functional theory training data fed into a reduced order model Hamiltonian that accounts for effective electronic and spin interactions of neighboring transition metal atoms at various lengths in a background of fixed composition and position lithium and oxygen atoms. This model can then be solved to include finite temperature thermodynamics into a convex hull analysis to understand the regions of ordered and disordered solid solution as well the transition metal orderings within the ordered region of the phase diagram. We find that for the majority of transition metal compositions of the layered material, specifically medium to high-Ni content, prefer transition metal ordering and predict the collection of preferred compositions in the ordered region.
We have performed an experimental study of the crystal structure, lattice-dynamics, and optical properties of PbCrO4 (the mineral crocoite) at ambient and high pressures. In particular, the crystal structure, Raman-active phonons, and electronic band -gap have been accurately determined. X-ray-diffraction, Raman, and optical-absorption experiments have allowed us also to completely characterize two pressure-induced structural phase transitions. The first transition is isostructural, maintaining the monoclinic symmetry of the crystal, and having important consequences in the physical properties; among other a band-gap collapse is induced. The second one involves an increase of the symmetry of the crystal, a volume collapse, and probably the metallization of PbCrO4. The results are discussed in comparison with related compounds and the effects of pressure in the electronic structure explained. Finally, the room-temperature equation of state of the low-pressure phases is also obtained.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا