ترغب بنشر مسار تعليمي؟ اضغط هنا

Proplyds in the Flame Nebula NGC 2024

306   0   0.0 ( 0 )
 نشر من قبل Thomas Haworth PhD
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A recent survey of the inner $0.35times0.35$pc of the NGC 2024 star forming region revealed two distinct millimetre continuum disc populations that appear to be spatially segregated by the boundary of a dense cloud. The eastern (and more embedded) population is $sim0.2-0.5$Myr old, with an ALMA mm continuum disc detection rate of about $45,$per cent. However this drops to only $sim15$per cent in the 1Myr western population. When presenting this result, van Terwisga et al. (2020) suggested that the two main UV sources, IRS 1 (a B0.5V star in the western region) and IRS 2b (an O8V star in the eastern region, but embedded) have both been evaporating the discs in the depleted western population. In this paper we report the firm discovery in archival HST data of 4 proplyds and 4 further candidate proplyds in NGC 2024, confirming that external photoevaporation of discs is occurring. However, the locations of these proplyds changes the picture. Only three of them are in the depleted western population and their evaporation is dominated by IRS 1, with no obvious impact from IRS 2b. The other 5 proplyds are in the younger eastern region and being evaporated by IRS 2b. We propose that both populations are subject to significant external photoevaporation, which happens throughout the region wherever discs are not sufficiently shielded by the interstellar medium. The external photoevaporation and severe depletion of mm grains in the 0.2-0.5Myr eastern part of NGC 2024 would be in competition even with very early planet formation.



قيم البحث

اقرأ أيضاً

Protoplanetary disks in dense, massive star-forming regions are strongly affected by their environment. How this environmental impact changes over time is an important constraint on disk evolution and external photoevaporation models. We characterize the dust emission from 179 disks in the core of the young (0.5 Myr) NGC 2024 cluster. By studying how the disk mass varies within the cluster, and comparing these disks to those in other regions, we aim to determine how external photoevaporation influences disk properties over time. Using the Atacama Large Millimeter/submillimeter Array, a 2.9 x 2.9 mosaic centered on NGC 2024 FIR 3 was observed at 225 GHz with a resolution of 0.25, or ~100 AU. The imaged region contains 179 disks identified at IR wavelengths, seven new disk candidates, and several protostars. The overall detection rate of disks is $32 pm 4%$. Few of the disks are resolved, with the exception of a giant (R = 300 AU) transition disk. Serendipitously, we observe a millimeter flare from an X-ray bright young stellar object (YSO), and resolve continuum emission from a Class 0 YSO in the FIR 3 core. Two distinct disk populations are present: a more massive one in the east, along the dense molecular ridge hosting the FIR 1-5 YSOs, with a detection rate of $45 pm 7%$. In the western population, towards IRS 1, only $15 pm 4%$ of disks are detected. NGC 2024 hosts two distinct disk populations. Disks along the dense molecular ridge are young (0.2 - 0.5 Myr) and partly shielded from the far ultraviolet radiation of IRS 2b; their masses are similar to isolated 1 - 3 Myr old SFRs. The western population is older and at lower extinctions, and may be affected by external photoevaporation from both IRS 1 and IRS 2b. However, it is possible these disks had lower masses to begin with.
Although the Orion Nebula Cluster is one of the most studied clusters in the solar neighborhood, the evolution of the very low-mass members ($M_* < 0.25 , M_odot$) has not been fully addressed due to their faintness. Our goal is to verify if some you ng and very low-mass objects in the Orion Nebula Cluster show evidence of ongoing accretion using broadband VLT/X-Shooter spectra. For each target, we determined the corresponding stellar parameters, veiling, observed Balmer jump, and accretion rates. Additionally, we searched for the existence of circumstellar disks through available on-line photometry. We detected accretion activity in three young stellar objects in the Orion Nebula Cluster, two of them being in the very low-mass range. We also detected the presence of young transition disks with ages between 1 and 3.5 Myr.
We present ALMA 850 $mu$m continuum observations of the Orion Nebula Cluster that provide the highest angular resolution ($sim 0rlap{.}1 approx 40$ AU) and deepest sensitivity ($sim 0.1$ mJy) of the region to date. We mosaicked a field containing $si m 225$ optical or near-IR-identified young stars, $sim 60$ of which are also optically-identified proplyds. We detect continuum emission at 850 $mu$m towards $sim 80$% of the proplyd sample, and $sim 50$% of the larger sample of previously-identified cluster members. Detected objects have fluxes of $sim 0.5$-80 mJy. We remove sub-mm flux due to free-free emission in some objects, leaving a sample of sources detected in dust emission. Under standard assumptions of isothermal, optically thin disks, sub-mm fluxes correspond to dust masses of $sim 0.5$ to 80 Earth masses. We measure the distribution of disk sizes, and find that disks in this region are particularly compact. Such compact disks are likely to be significantly optically thick. The distributions of sub-mm flux and inferred disk size indicate smaller, lower-flux disks than in lower-density star-forming regions of similar age. Measured disk flux is correlated weakly with stellar mass, contrary to studies in other star forming regions that found steeper correlations. We find a correlation between disk flux and distance from the massive star $theta^1$ Ori C, suggesting that disk properties in this region are influenced strongly by the rich cluster environment.
We present Mon-735, a detached double-lined eclipsing binary (EB) member of the $sim$3 Myr old NGC 2264 star forming region, detected by Spitzer. We simultaneously model the Spitzer light curves, follow-up Keck/HIRES radial velocities, and the system s spectral energy distribution to determine self-consistent masses, radii and effective temperatures for both stars. We find that Mon-735 comprises two pre-main sequence M dwarfs with component masses of $M = 0.2918 pm 0.0099$ and $0.2661 pm 0.0095$ $rm{M}_{odot}$, radii of $R = 0.762 pm 0.022$ and $0.748 pm 0.023$ $rm{R}_{odot}$, and effective temperatures of $T_{rm eff} = 3260 pm 73$ and $3213 pm 73$ $rm{K}$. The two stars travel on circular orbits around their common centre of mass in $P = 1.9751388 pm 0.0000050$ days. We compare our results for Mon-735, along with another EB in NGC 2264 (CoRoT 223992193), to the predictions of five stellar evolution models. These suggest that the lower mass EB system Mon-735 is older than CoRoT 223992193 in the mass-radius diagram (MRD) and, to a lesser extent, in the Hertzsprung-Russell diagram (HRD). The MRD ages of Mon-735 and CoRoT 223992193 are $sim$7-9 and 4-6 Myr, respectively, with the two components in each EB system possessing consistent ages.
94 - L. G. Bouma 2021
Recent analyses of the Gaia data have identified diffuse stellar populations surrounding nearby open clusters. It is important to verify that these halos, tails, and strings are of similar ages and compositions as stars in the denser part of the clus ter. We present an analysis of NGC 2516 ($approx$150 Myr), which has a classical tidal radius of 10 pc and an apparent halo of stars spanning 500 pc ($20^circ$ on-sky). Combining photometry from Gaia, rotation periods from TESS, and lithium measurements from Gaia-ESO and GALAH, we find that the halo of NGC 2516 is the same age as the clusters core. Two thirds of kinematically selected halo members out to 250 pc from the cluster center have rotation periods consistent with a gyrochronological age of 150 Myr. A comparison sample of field stars shows no such trend. The lithium abundances of stars in the halo are higher than in the field, and are correlated with the stellar rotation rate and binarity fraction, as has been noted in other young open clusters. Broadly speaking, this work supports a new paradigm wherein the halos of open clusters are often more populous than their cores. We highlight implications for spectroscopic survey targeting, open cluster dispersal, and planet searches around young stars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا