ﻻ يوجد ملخص باللغة العربية
Using the dipole picture for electron-nucleus deep inelastic scattering at small Bjorken $x$, we study the effects of gluon saturation in the nuclear target on the cross-section for SIDIS (single inclusive hadron, or jet, production). We argue that the sensitivity of this process to gluon saturation can be enhanced by tagging on a hadron (or jet) which carries a large fraction $z simeq 1$ of the longitudinal momentum of the virtual photon. This opens the possibility to study gluon saturation in relatively hard processes, where the virtuality $Q^2$ is (much) larger than the target saturation momentum $Q_s^2$, but such that $z(1-z)Q^2lesssim Q_s^2$. Working in the limit $z(1-z)Q^2ll Q_s^2$, we predict new phenomena which would signal saturation in the SIDIS cross-section. For sufficiently low transverse momenta $k_perpll Q_s$ of the produced particle, the dominant contribution comes from elastic scattering in the black disk limit, which exposes the unintegrated quark distribution in the virtual photon. For larger momenta $k_perpgtrsim Q_s$, inelastic collisions take the leading role. They explore gluon saturation via multiple scattering, leading to a Gaussian distribution in $k_perp$ centred around $Q_s$. When $z(1-z)Q^2ll Q^2$, this results in a Cronin peak in the nuclear modification factor (the $R_{pA}$ ratio) at moderate values of $x$. With decreasing $x$, this peak is washed out by the high-energy evolution and replaced by nuclear suppression ($R_{pA}<1$) up to large momenta $k_perpgg Q_s$. Still for $z(1-z)Q^2ll Q_s^2$, we also compute SIDIS cross-sections integrated over $k_perp$. We find that both elastic and inelastic scattering are controlled by the black disk limit, so they yield similar contributions, of zeroth order in the QCD coupling.
Data from E772 and E866 experiments on the Drell-Yan process exhibit a significant nuclear suppression at large Feynman xF. We show that a corresponding kinematic region does not allow to interpret this as a manifestation of coherence or a Color Glas
We study $D$ - meson production at forward rapidities taking into account the non - linear effects in the QCD dynamics and the intrinsic charm component of the proton wave function. The total cross section, the rapidity distributions and the Feynman
We compute the cross section for photons emitted from sea quarks in proton-nucleus collisions at collider energies. The computation is performed within the dilute-dense kinematics of the Color Glass Condensate (CGC) effective field theory. Albeit the
RHIC experiments have recently measured the azimuthal correlation function of forward di-hadrons. The data show a disappearance of the away-side peak in central d+Au collisions, compared to p+p collisions, as was predicted by saturation physics. Inde
Final states with a vector boson and a hadronic jet allow one to infer the Born-level kinematics of the underlying hard scattering process, thereby probing the partonic structure of the colliding protons. At forward rapidities, the parton collisions