ترغب بنشر مسار تعليمي؟ اضغط هنا

Long-range correlations in pinned athermal networks

77   0   0.0 ( 0 )
 نشر من قبل Kabir Ramola
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We derive exact results for displacement fields that develop as a response to external pinning forces in two dimensional athermal networks. For a triangular lattice arrangement of particles interacting through soft potentials, we develop a Greens function formalism which we use to derive exact results for displacement fields produced by localized external forces. We show that in the continuum limit the displacement fields decay as $1/r$ at large distances $r$ away from a force dipole. Finally, we extend our formulation to study correlations in the displacement fields produced by the external pinning forces. We show that uncorrelated pinned forces at each vertex give rise to long-range correlations in displacements in athermal systems, with a non-trivial system size dependence. We verify our predictions with numerical simulations of athermal networks in two dimensions.

قيم البحث

اقرأ أيضاً

We analyze the fluctuations in particle positions and inter-particle forces in disordered jammed crystals in the limit of weak disorder. We demonstrate that such athermal systems are fundamentally different from their thermal counterparts, characteri zed by constrained fluctuations of forces perpendicular to the lattice directions. We develop a disorder perturbation expansion in polydispersity about the crystalline state, which we use to derive exact results to linear order. We show that constrained fluctuations result as a consequence of local force balance conditions, and are characterized by non-Gaussian distributions which we derive exactly. We analytically predict several properties of such systems, including the scaling of the average coordination with polydispersity and packing fraction, which we verify with numerical simulations using soft disks with one-sided harmonic interactions.
We study the stochastic dynamics of an electrolyte driven by a uniform external electric field and show that it exhibits generic scale invariance despite the presence of Debye screening. The resulting long-range correlations give rise to a Casimir-li ke fluctuation-induced force between neutral boundaries that confine the ions; this force is controlled by the external electric field, and it can be both attractive and repulsive with similar boundary conditions, unlike other long-range fluctuation-induced forces. This work highlights the importance of nonequilibrium correlations in electrolytes and shows how they can be used to tune interactions between uncharged biological or synthetic structures at large separations.
We consider a model for periodic patterns of charges constrained over a cylindrical surface. In particular we focus on patterns of chiral helices, achiral rings or vertical lamellae, with the constraint of global electroneutrality. We study the depen dence of the patterns size and pitch angle on the radius of the cylinder and salt concentration. We obtain a phase diagram by using numerical and analytic techniques. For pure Coulomb interactions, we find a ring phase for small radii and a chiral helical phase for large radii. At a critical salt concentration, the characteristic domain size diverges, resulting in macroscopic phase segregation of the components and restoring chiral symmetry. We discuss possible consequences and generalizations of our model.
We introduce a perturbation expansion for athermal systems that allows an exact determination of displacement fields away from the crystalline state as a response to disorder. We show that the displacement fields in energy minimized configurations of particles interacting through central potentials with microscopic disorder, can be obtained as a series expansion in the strength of the disorder. We introduce a hierarchy of force balance equations that allows an order-by-order determination of the displacement fields, with the solutions at lower orders providing sources for the higher order solutions. This allows the simultaneous force balance equations to be solved, within a hierarchical perturbation expansion to arbitrary accuracy. We present exact results for an isotropic defect introduced into the crystalline ground state at linear order and second order in our expansion. We show that the displacement fields produced by the defect display interesting self-similar properties at every order. We derive a $|delta r| sim 1/r$ and $|delta f| sim 1/r^2$ decay for the displacement fields and excess forces at large distances $r$ away from the defect. Finally we derive non-linear corrections introduced by the interactions between defects at second order in our expansion. We verify our exact results with displacement fields obtained from energy minimized configurations of soft disks.
We perform an analytical analysis of the long-range degree correlation of the giant component in an uncorrelated random network by employing generating functions. By introducing a characteristic length, we find that a pair of nodes in the giant compo nent is negatively degree-correlated within the characteristic length and uncorrelated otherwise. At the critical point, where the giant component becomes fractal, the characteristic length diverges and the negative long-range degree correlation emerges. We further propose a correlation function for degrees of the $l$-distant node pairs, which behaves as an exponentially decreasing function of distance in the off-critical region. The correlation function obeys a power-law with an exponential cutoff near the critical point. The ErdH{o}s-R{e}nyi random graph is employed to confirm this critical behavior.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا