ترغب بنشر مسار تعليمي؟ اضغط هنا

Bayesian calibration of the mixing length parameter $alpha_{ML}$ and of the helium-to-metal enrichment ratio $Delta Y/Delta Z$ with open clusters: the Hyades test-bed

81   0   0.0 ( 0 )
 نشر من قبل Emanuele Tognelli
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We tested the capability of a Bayesian procedure to calibrate both the helium abundance and the mixing length parameter ($alpha_{ML}$), using precise photometric data for main-sequence (MS) stars in a cluster with negligible reddening and well-determined distance. The method has been applied first to a mock data set generated to mimic Hyades MS stars and then to the real Hyades cluster. We tested the impact on the results of varying the number of stars in the sample, the photometric errors, and the estimated [Fe/H]. The analysis of the synthetic data set shows that $alpha_{ML}$ is recovered with a very good precision in all the analysed cases (with an error of few percent), while [Fe/H] and the helium-to-metal enrichment ratio $Delta Y/Delta Z$ are more problematic. If spectroscopic determinations of [Fe/H] are not available and thus [Fe/H] has to be recovered alongside with $Delta Y/Delta Z$ and $alpha_{ML}$, the well-known degeneracy between [Fe/H]-$Delta Y/Delta Z$-$alpha_{ML}$ could result in a large uncertainty on the recovered parameters, depending on the portion of the MS used for the analysis. On the other hand, the prior knowledge of an accurate [Fe/H] value puts a strong constraint on the models, leading to a more precise parameters recovery. Using the current set of PISA models, the most recent [Fe/H] value and the Gaia photometry and parallaxes for the Hyades cluster, we obtained the average values $<alpha_{ML}>=2.01pm0.05$ and $<Delta Y/Delta Z>=2.03pm0.33$, sensitively reducing the uncertainty in these important parameters.

قيم البحث

اقرأ أيضاً

53 - Mario Gennaro 2010
The stellar helium-to-metal enrichment ratio, Delta Y/Delta Z, is a widely studied astrophysical quantity. However, its value is still not precisely constrained. This paper is focused on the study of the main sources of uncertainty which affect the D elta Y/Delta Z derived from the analysis of the low-main sequence (MS) stars in the solar neighborhood. The possibility to infer the value of Delta Y/Delta Z from the study of low-MS stars relies on the dependence of the stellar luminosity and effective temperature on the initial Y and Z. The Delta Y/Delta Z ratio is obtained by comparing the magnitude difference between the observed stars and a reference theoretical zero age main sequence (ZAMS) with the related theoretical magnitude differences computed from a new set of stellar models with up-to-date input physics and a fine grid of chemical compositions. A Monte Carlo approach has been used to evaluate the impact on the result of different sources of uncertainty, i.e. observational errors, evolutionary effects, systematic uncertainties of the models. As a check of the procedure, the method has been applied to a different data set, namely the low-MS of the Hyades. Once a set of ZAMS and atmosphere models have been chosen, we found that the inferred value of Delta Y/Delta Z is sensitive to the age of the stellar sample, even if we restricted the data set to low luminosity stars. The lack of an accurate age estimate of low mass field stars leads to an underestimate of the inferred Delta Y/Delta Z of ~2 units. On the contrary the method firmly recovers the Delta Y/Delta Z value for not evolved samples of stars such as the Hyades low-MS. Adopting a solar calibrated mixing-length parameter and the PHOENIX GAIA v2.6.1 atmospheric models, we found Delta Y/Delta Z = 5.3 +/- 1.4 once the age correction has been applied. The Hyades sample provided a perfectly consistent value.
48 - Luca Casagrande 2007
We use nearby K dwarf stars to measure the helium-to-metal enrichment ratio, a diagnostic of the chemical history of the Solar Neighbourhood. Our sample of K dwarfs has homogeneously determined effective temperatures, bolometric luminosities and meta llicities, allowing us to fit each star to the appropriate stellar isochrone and determine its helium content indirectly. We use a newly computed set of Padova isochrones which cover a wide range of helium and metal content. Our theoretical isochrones have been checked against a congruous set of main sequence binaries with accurately measured masses, to discuss and validate their range of applicability. We find that the stellar masses deduced from the isochrones are usually in excellent agreement with empirical measurements. Good agreement is also found with empirical mass-luminosity relations. Despite fitting the masses of the stars very well, we find that anomalously low helium content (lower than primordial helium) is required to fit the luminosities and temperatures of the metal poor K dwarfs, while more conventional values of the helium content are derived for the stars around solar metallicity. We have investigated the effect of diffusion in stellar models and LTE assumption in deriving metallicities. Neither of these is able to resolve the low helium problem alone and only marginally if the cumulated effects are included, unless we assume a mixing-length which is strongly decreasing with metallicity. Further work in stellar models is urgently needed. The helium-to-metal enrichment ratio is found to be Delta Y / Delta Z = 2.1 +/- 0.9 around and above solar metallicity, consistent with previous studies, whereas open problems still remain at the lowest metallicities. Finally, we determine the helium content for a set of planetary host stars.
We perform a calibration of the mixing length parameter at the bottom boundary of the convection zone for helium-dominated atmospheres of white dwarfs. This calibration is based on a grid of 3D DB (pure-helium) and DBA (helium-dominated with traces o f hydrogen) model atmospheres computed with the CO5BOLD code, and a grid of 1D DB and DBA envelope structures. The 3D models span a parameter space of hydrogen-to-helium abundances between -10.0 and -2.0, surface gravities between 7.5 and 9.0 and effective temperatures between 12000 K and 34000 K. The 1D envelopes cover a similar atmospheric parameter range, but are also calculated with different values of the mixing length parameter, namely ML2/alpha between 0.4 and 1.4. The calibration is performed based on two definitions of the bottom boundary of the convection zone, the Schwarzschild and the zero convective flux boundaries. Thus, our calibration is relevant for applications involving the bulk properties of the convection zone including its total mass, which excludes the spectroscopic technique. Overall, the calibrated ML2/alpha is smaller than what is commonly used in evolutionary models and theoretical determinations of the blue edge of the instability strip for pulsating DB and DBA stars. With calibrated ML2/alpha we are able to deduce more accurate convection zone sizes needed for studies of planetary debris mixing and dredge-up of carbon from the core. We highlight this by calculating examples of metal-rich 3D DBAZ models and finding their convection zone masses. Mixing length calibration represents the first step of in-depth investigations of convective overshoot in white dwarfs with helium-dominated atmospheres.
438 - R. Carrera (1 , 2 , 3 2011
Context. Open clusters are ideal test particles to study the chemical evolution of the Galactic disc. However the existing high-resolution abundance determinations, not only of [Fe/H], but also of other key elements, is largely insufficient at the mo ment. Aims. To increase the number of Galactic open clusters with high quality abundance determinations, and to gather all the literature determinations published so far. Methods. Using high-resolution (R~30000), high-quality (S/N$>60 per pixel), we obtained spectra for twelve stars in four open clusters with the fiber spectrograph FOCES, at the 2.2 Calar Alto Telescope in Spain. We use the classical equivalent widths analysis to obtain accurate abundances of sixteen elements: Al, Ba, Ca, Co, Cr, Fe, La, Mg, Na, Nd, Ni, Sc, Si, Ti, V, Y. Oxygen abundances have been derived through spectral synthesis of the 6300 A forbidden line. Results. We provide the first determination of abundance ratios other than Fe for NGC 752 giants, and ratios in agreement with the literature for the Hyades, Praesepe and Be 32. We use a compilation of literature data to study Galactic trends of [Fe/H] and [alpha/Fe] with Galactocentric radius, age, and height above the Galactic plane. We find no significant trends, but some indication for a flattening of [Fe/H] at large Rgc, and for younger ages in the inner disc. We also found a possible decrease of [Fe/H] with |z| in the outer disc, and a weak increase of [alpha/Fe] with Rgc.
The CoRoT and Kepler missions provided a wealth of high-quality data for solar-like oscillations. To make the best of such data for seismic inferences, we need theoretical models with precise near-surface structure, which has significant influence on solar-like oscillation frequencies. The mixing-length parameter, $alpha$, is a key factor for the near-surface structure. In the convection formulations used in evolution codes, the $alpha$ is a free parameter that needs to be properly specified. We calibrated $alpha$ values by matching entropy profiles of 1D envelope models with those of 3D CO$^5$BOLD models. For such calibration, previous works concentrated on the classical mixing-length theory (MLT). Here we also analyzed the full spectrum turbulence (FST) models. For the atmosphere part in the 1D models, we use the Eddington grey $T(tau)$ relation and the one with the solar-calibrated Hopf-like function. For both the MLT and FST models with a mixing length $l=alpha H_p$, calibrated $alpha$ values increase with increasing $g$ or decreasing $T_{rm eff}$. For the FST models, we also calibrated values of $alpha^*$ defined as $l=r_{rm top}-r+alpha^*H_{p,{rm top}}$. $alpha^*$ is found to increase with $T_{rm eff}$ and $g$. As for the correspondence to the 3D models, the solar Hopf-like function gives a photospheric-minimum entropy closer to a 3D model than the Eddington $T(tau)$. The structure below the photosphere depends on the convection model. However, not a single convection model gives the best correspondence since the averaged 3D quantities are not necessarily related via an EOS. Although the FST models with $l=r_{rm top}-r+alpha^*H_{p,{rm top}}$ are found to give the frequencies closest to the solar observed ones, a more appropriate treatment of the top part of the 1D convective envelope is necessary.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا