ترغب بنشر مسار تعليمي؟ اضغط هنا

Detector Systems Engineering for Extremely Large Instruments

90   0   0.0 ( 0 )
 نشر من قبل Elizabeth George
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The scientific detector systems for the ESO ELT first-light instruments, HARMONI, MICADO, and METIS, together will require 27 science detectors: seventeen 2.5 $mu$m cutoff H4RG-15 detectors, four 4K x 4K 231-84 CCDs, five 5.3 $mu$m cutoff H2RG detectors, and one 13.5 $mu$m cutoff GEOSNAP detector. This challenging program of scientific detector system development covers everything from designing and producing state-of-the-art detector control and readout electronics, to developing new detector characterization techniques in the lab, to performance modeling and final system verification. We report briefly on the current design of these detector systems and developments underway to meet the challenging scientific performance goals of the ELT instruments.

قيم البحث

اقرأ أيضاً

The stability of Al-Mn transition edge sensor (TES) bolometers is studied as we vary the engineered TES transition, heat capacity, and/or coupling between the heat capacity and TES. We present thermal structure measurements of each of the 39 designs tested. The data is accurately fit by a two-body bolometer model, which allows us to extract the basic TES parameters that affect device stability. We conclude that parameters affecting device stability can be engineered for optimal device operation, and present the model parameters extracted for the different TES designs.
Transition Radiation (TR) plays an important role in particle identification in high-energy physics and its characteristics provide a feasible method of energy calibration in the energy range up to 10 TeV, which is of interest for dark matter searche s in cosmic rays. In a Transition Radiation Detector (TRD), the TR signal is superimposed onto the ionization energy loss signal induced by incident charged particles. In order to make the TR signal stand out from the background of ionization energy loss in a significant way, we optimized both the radiators and the detector. We have designed a new prototype of regular radiator optimized for a maximal TR photon yield, combined with the Side-On TRD which is supposed to improve the detection efficiency of TR. We started a test beam experiment with the Side-On TRD at Conseil Europ{e}en pour la Recherche Nucl{e}aire (CERN), and found that the experimental data is consistent with the simulation results.
The Spherical gaseous detector (or Spherical Proportional Counter, SPC) is a novel type of par- ticle detector, with a broad range of applications. Its main features include a very low energy threshold independent of the volume (due to its very low c apacitance), a good energy resolution, robustness and a single detection readout channel, in its simplest version. Applications range from radon emanation gas monitoring, neutron flux and gamma counting and spectroscopy to dark matter searches, in particular low mass WIMPs and coherent neutrino scattering measure- ment. Laboratories interested in these various applications share expertise within the NEWS (New Experiments With Sphere) network. SEDINE, a low background prototype installed at underground site of Laboratoire Souterrain de Modane is currently being operated and aims at measuring events at very low energy threshold, around 100 eV. We will present the energy cali- bration with 37Ar, the surface background reduction, the measurement of detector background at sub-keV energies, and show anticipated sensitivities for light dark matter search.
The DArk Matter Particle Explorer (DAMPE) is one of the four satellites within the Strategic Pioneer Research Program in Space Science of the Chinese Academy of Science (CAS). The Silicon-Tungsten Tracker (STK), which is composed of 768 singled-sided silicon microstrip detectors, is one of the four subdetectors in DAMPE, providing track reconstruction and charge identification for relativistic charged particles. The charge response of DAMPE silicon microstrip detectors is complicated, depending on the incident angle and impact position. A new charge reconstruction algorithm for the DAMPE silicon microstrip detector is introduced in this paper. This algorithm can correct the complicated charge response, and was proved applicable by the ion test beam.
Light dark matter in the context of dark sector theories is an attractive candidate for the dark matter thought to make up the bulk of the mass of our universe. We explore here the possibility of using a low-pressure, negative-ion, time projection ch amber detector to search for light dark matter behind the beam dump of an electron accelerator. The sensitivity of a 10 m long detector is several orders of magnitude better than existing limits. This sensitivity includes regions of parameter space where light dark matter is predicted to have a required relic density consistent with measured dark matter density. Backgrounds at shallow depth will need to be considered carefully. However, several signatures exist, including a powerful directional signature, which will allow a detection even in the presence of backgrounds.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا