ﻻ يوجد ملخص باللغة العربية
We consider the problem of efficiently estimating the size of the inner join of a collection of preprocessed relational tables from the perspective of instance optimality analysis. The run time of instance optimal algorithms is comparable to the minimum time needed to verify the correctness of a solution. Previously instance optimal algorithms were only known when the size of the join was small (as one component of their run time that was linear in the join size). We give an instance optimal algorithm for estimating the join size for all instances, including when the join size is large, by removing the dependency on the join size. As a byproduct, we show how to sample rows from the join uniformly at random in a comparable amount of time.
Motivated by crowdsourced computation, peer-grading, and recommendation systems, Braverman, Mao and Weinberg [STOC16] studied the emph{query} and emph{round} complexity of fundamental problems such as finding the maximum (textsc{max}), finding all el
We study the problem of estimating the trace of a matrix $A$ that can only be accessed through matrix-vector multiplication. We introduce a new randomized algorithm, Hutch++, which computes a $(1 pm epsilon)$ approximation to $tr(A)$ for any positive
Given a point set $Psubset mathbb{R}^d$, a kernel density estimation for Gaussian kernel is defined as $overline{mathcal{G}}_P(x) = frac{1}{left|Pright|}sum_{pin P}e^{-leftlVert x-p rightrVert^2}$ for any $xinmathbb{R}^d$. We study how to construct a
From a high volume stream of weighted items, we want to maintain a generic sample of a certain limited size $k$ that we can later use to estimate the total weight of arbitrary subsets. This is the classic context of on-line reservoir sampling, thinki
We propose joinwidth, a new complexity parameter for the Constraint Satisfaction Problem (CSP). The definition of joinwidth is based on the arrangement of basic operations on relations (joins, projections, and pruning), which inherently reflects the