ﻻ يوجد ملخص باللغة العربية
Aims: This paper aims to derive an expression for the sensitivity of a polarimetric radio interferometer that is valid for all-sky observations of arbitrarily polarized sources, with neither a restriction on FoV nor with any a priori assumption regarding the polarization state of the source. We verify the resulting formula with an all-sky observation using the Murchison Widefield Array (MWA) telescope. Methods: The sensitivity expression is developed from first principles by applying the concept of System Equivalent Flux Density (SEFD) to a polarimetric radio interferometer not by computing $A_e/T_{sys}$. The SEFD is calculated from the standard deviation of the noisy flux density estimate for a target source due to system noise. Results: The SEFD for a polarimetric radio interferometer is generally not $1/sqrt{2}$ of a single-polarized interferometer as is often assumed for narrow FoV. This assumption can lead to significant errors for a dual-polarized dipole based system, which is common in low-frequency radio astronomy: up to $sim 15%$ for a zenith angle (ZA) coverage of $45^circ$, and up to $sim45%$ for $60^circ$ coverage. The worst case errors occur in the diagonal planes of the dipole for very wide FoV. This is demonstrated through theory, simulation and observations. Furthermore, using the resulting formulation, calculation of the off-zenith sensitivity is straightforward and unambiguous. Conclusions: For wide FoV observations pertinent to low-frequency radio interferometer such as the SKA-Low, the narrow FoV and the single-polarized sensitivity expressions are not correct and should be replaced by the formula derived in this paper.
The radio sky at lower frequencies, particularly below 20 MHz, is expected to be a combination of increasingly bright non-thermal emission and significant absorption from intervening thermal plasma. The sky maps at these frequencies cannot therefore
MASER (Measurements, Analysis, and Simulation of Emission in the Radio range) is a comprehensive infrastructure dedicated to time-dependent low frequency radio astronomy (up to about 50 MHz). The main radio sources observed in this spectral range are
FARSIDE (Farside Array for Radio Science Investigations of the Dark ages and Exoplanets) is a Probe-class concept to place a low radio frequency interferometric array on the farside of the Moon. A NASA-funded design study, focused on the instrument,
We report development of a simple and affordable radio interferometer suitable as an educational laboratory experiment. With the increasing importance of interferometry in astronomy, the lack of educational interferometers is an obstacle to training
Radio interferometry most commonly involves antennas or antenna arrays of identical design. The identical antenna assumption leads to a convenient and useful mathematical simplification resulting in a scalar problem. An interesting variant to this is