ترغب بنشر مسار تعليمي؟ اضغط هنا

HII regions and high-mass starless clump candidates II. Fragmentation and induced star formation at ~0.025 pc scale: An ALMA continuum study

84   0   0.0 ( 0 )
 نشر من قبل Siju Zhang
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف S. Zhang




اسأل ChatGPT حول البحث

The ionization feedback from HII regions modifies the properties of high-mass starless clumps (HMSCs, of several hundred to a few thousand solar masses with a size of ~0.1-1 pc), such as temperature and turbulence, on the clump scale. The question of whether the presence of HII regions modifies the core-scale fragmentation and star formation in HMSCs remains to be explored. We aim to investigate the difference of 0.025 pc-scale fragmentation between candidate HMSCs that are strongly impacted by HII regions and less disturbed ones. We also search for evidence of mass shaping and induced star formation in the impacted HMSCs. Using the ALMA 1.3 mm continuum with a resolution of ~1.3, we imaged eight candidate HMSCs, including four impacted by HII regions and another four situated in the quiet environment. The less-impacted HMSCs are selected on the basis of their similar mass and distance compared to the impacted ones to avoid any possible bias linked to these parameters. A total of 51 cores were detected in eight clumps, with three to nine cores for each clump. Within our limited sample, we did not find a clear difference in the ~0.025 pc-scale fragmentation between impacted and non-impacted HMSCs, even though HII regions seem to affect the spatial distribution of the fragmented cores. Both types of HMSCs present a thermal fragmentation with two-level hierarchical features at the clump thermal Jeans length ${lambda_{J, clump}^{th}}$ and 0.3${lambda_{J, clump}^{th}}$. The ALMA emission morphology of the impacted HMSCs AGAL010.214-00.306 and AGAL018.931-00.029 sheds light on the capacities of HII regions to shape gas and dust in their surroundings and possibly to trigger star formation at ~0.025 pc-scale in HMSCs. Future ALMA surveys covering a large number of impacted HMSCs with high turbulence are needed to confirm the trend of fragmentation indicated in this study.



قيم البحث

اقرأ أيضاً

105 - S. Zhang 2020
The role of ionization feedback on high-mass (>8 Msun) star formation (HMSF) is still highly debated. Questions remain concerning the presence of nearby HII regions changes the properties of early HMSF and whether HII regions promote or inhibit the f ormation of high-mass stars. To characterize the role of HII regions on the HMSF, we study the properties of a sample of candidates high-mass starless clumps (HMSCs), of which about 90% have masses larger than 100 Msun. These high-mass objects probably represent the earliest stages of HMSF; we search if (and how) their properties are modified by the presence of an HII region. We took advantage of the recently published catalog of HMSC candidates. By cross matching the HMSCs and HII regions, we classified HMSCs into three categories: 1) The HMSCs associated with HII regions both in the position in the projected plane of the sky and in velocity; 2) HMSCs associated in the plane of the sky, but not in velocity; and 3) HMSCs far away from any HII regions in the projected sky plane. We carried out comparisons between associated and nonassociated HMSCs based on statistical analyses of multiwavelength data from infrared to radio. Statistical analyses suggest that HMSCs associated with HII regions are warmer, more luminous, more centrally-peaked and turbulent. We also clearly show, for the first time, that the ratio of bolometric luminosity to envelope mass of HMSCs (L/M) could not be a reliable evolutionary probe for early HMSF due to the external heating effects of the HII regions. More centrally peaked and turbulent properties of HMSCs associated with HII regions may promote the formation of high-mass stars by limiting fragmentation. High resolution interferometric surveys toward HMSCs are crucial to reveal how HII regions impact the star formation process inside HMSCs.
(Abridged) The initial physical conditions of high-mass stars and protoclusters remain poorly characterized. To this end we present the first targeted ALMA 1.3mm continuum and spectral line survey towards high-mass starless clump candidates, selectin g a sample of 12 of the most massive candidates ($400-4000, M_odot$) within 5 kpc. The joint 12+7m array maps have a high spatial resolution of $sim 3000, mathrm{au}$ ($sim 0.8^{primeprime}$) and have point source mass-completeness down to $sim 0.3, M_odot$ at $6sigma$ (or $1sigma$ column density sensitivity of $1.1times10^{22}, mathrm{cm^{-2}}$). We discover previously undetected signposts of low-luminosity star formation from CO (2-1) and SiO (5-4) bipolar outflows and other signatures towards 11 out of 12 clumps, showing that current MIR/FIR Galactic Plane surveys are incomplete to low- and intermediate-mass protostars ($lesssim 50, L_odot$). We compare a subset of the observed cores with a suite of radiative transfer models of starless cores. We find a high-mass starless core candidate with a model-derived mass consistent with $29^{52}_{15}, M_odot$ when integrated over size scales of $2times10^4, mathrm{au}$. Unresolved cores are poorly fit by starless core models, supporting the interpretation that they are protostellar even without detection of outflows. Substantial fragmentation is observed towards 10 out of 12 clumps. We extract sources from the maps using a dendrogram to study the characteristic fragmentation length scale. Nearest neighbor separations when corrected for projection are consistent with being equal to the clump average thermal Jeans length. Our findings support a hierarchical fragmentation process, where the highest density regions are not strongly supported against thermal gravitational fragmentation by turbulence or magnetic fields.
In order to search for shocks in the very early stage of star formation, we performed single-point surveys of SiO J=1-0, 2-1 and 3-2 lines and the H$_2$CO $2_{12}-1_{11}$ line toward a sample of 100 high-mass starless clump candidates (SCCs) by using the Korean VLBI Network (KVN) 21-m radio telescopes. The detection rates of the SiO J=1-0, 2-1, 3-2 lines and the H$_2$CO line are $31.0%$, $31.0%$, $19.5%$ and $93.0%$, respectively. Shocks seem to be common in this stage of massive star formation. The widths of the observed SiO lines (full width at zero power (FWZP)) range from 3.4 to 55.1 km s$^{-1}$. A significant fraction ($sim29%$) of the detected SiO spectra have broad line widths (FWZP $>20~km~s^{-1}$), which are very likely associated with fast shocks driven by protostellar outflows. This result suggests that about one third of the SiO-detected SCCs are not really starless but protostellar. On the other hand, about 40$%$ of the detected SiO spectra show narrow line widths (FWZP<10 $km~s^{-1}$) probably associated with low-velocity shocks which are not necessarily protostellar in origin. The estimated SiO column densities are mostly $0.31-4.32times10^{12}~cm^{-2}$. Comparing the SiO column densities derived from SiO J=1-0 and 2-1 lines, we suggest that the SiO molecules in the SCCs may be in the non-LTE condition. The SiO abundances to H$_2$ are usually $0.20-10.92times10^{-10}$.
Aims: We resolve the small-scale structure around the high-mass hot core region G351.77-0.54 to investigate its disk and fragmentation properties. Methods: Using ALMA at 690GHz with baselines exceeding 1.5km, we study the dense gas, dust and outflo w emission at an unprecedented spatial resolution of 0.06 ([email protected]). Results: Within the inner few 1000AU, G351.77 fragments into at least four cores (brightness temperatures between 58 and 197K). The central structure around the main submm source #1 with a diameter of ~0.5 does not show additional fragmentation. While the CO(6-5) line wing emission shows an outflow lobe in the north-western direction emanating from source #1, the dense gas tracer CH3CN shows a velocity gradient perpendicular to the outflow that is indicative of rotational motions. Absorption profile measurements against the submm source #2 indicate infall rates on the order of 10^{-4} to 10^{-3}M_sun/yr which can be considered as an upper limit of the mean accretion rates. The position-velocity diagrams are consistent with a central rotating disk-like structure embedded in an infalling envelope, but they may also be influenced by the outflow. Using the CH_3CN(37_k-36_k) k-ladder with excitation temperatures up to 1300K, we derive a gas temperature map of source #1 exhibiting temperatures often in excess of 1000K. Brightness temperatures of the submm continuum never exceed 200K. This discrepancy between gas temperatures and submm dust brightness temperatures (in the optically thick limit) indicates that the dust may trace the disk mid-plane whereas the gas could be tracing a hotter gaseous disk surface layer. In addition, we conduct a pixel-by-pixel Toomre gravitational stability analysis of the central rotating structure. The derived high Q values throughout the structure confirm that this central region appears stable against gravitational instability.
We investigate the properties of star forming regions in a previously published numerical simulation of molecular cloud formation out of compressive motions in the warm neutral atomic interstellar medium, neglecting magnetic fields and stellar feedba ck. In this simulation, the velocity dispersions at all scales are caused primarily by infall motions rather than by random turbulence. We study the properties (density, total gas+stars mass, stellar mass, velocity dispersion, and star formation rate) of the cloud hosting the first local, isolated star formation event in the simulation and compare them with those of the cloud formed by a later central, global collapse event. We suggest that the small-scale, isolated collapse may be representative of low- to intermediate-mass star-forming regions, while the large-scale, massive one may be representative of massive star forming regions. We also find that the statistical distributions of physical properties of the dense cores in the region of massive collapse compare very well with those from a recent survey of the massive star forming region in the Cygnus X molecular cloud. The star formation efficiency per free-fall time (SFE_ff) of the high-mass SF clump is low, ~0.04. This occurs because the clump is accreting mass at a high rate, not because its specific SFR (SSFR) is low. This implies that a low value of the SFE_ff does not necessarily imply a low SSFR, but may rather indicate a large gas accretion rate. We suggest that a globally low SSFR at the GMC level can be attained even if local star forming sites have much larger values of the SSFR if star formation is a spatially intermittent process, so that most of the mass in a GMC is not participating of the SF process at any given time.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا