ﻻ يوجد ملخص باللغة العربية
We use a continuous depth version of the Residual Network (ResNet) model known as Neural ordinary differential equations (NODE) for the purpose of galaxy morphology classification. We applied this method to carry out supervised classification of galaxy images from the Galaxy Zoo 2 dataset, into five distinct classes, and obtained an accuracy of about 92% for most of the classes. Through our experiments, we show that NODE not only performs as well as other deep neural networks, but has additional advantages over them, which can prove very useful for next generation surveys. We also compare our result against ResNet. While ResNet and its variants suffer problems, such as time consuming architecture selection (e.g. the number of layers) and the requirement of large data for training, NODE does not have these requirements. Through various metrics, we conclude that the performance of NODE matches that of other models, despite using only one-third of the total number of parameters as compared to these other models.
We introduce a new family of deep neural network models. Instead of specifying a discrete sequence of hidden layers, we parameterize the derivative of the hidden state using a neural network. The output of the network is computed using a black-box di
Neural Ordinary Differential Equations (ODE) are a promising approach to learn dynamic models from time-series data in science and engineering applications. This work aims at learning Neural ODE for stiff systems, which are usually raised from chemic
Optical satellite sensors cannot see the Earths surface through clouds. Despite the periodic revisit cycle, image sequences acquired by Earth observation satellites are therefore irregularly sampled in time. State-of-the-art methods for crop classifi
Understanding morphological types of galaxies is a key parameter for studying their formation and evolution. Neural networks that have been used previously for galaxy morphology classification have some disadvantages, such as not being invariant unde
Combinations of neural ODEs with recurrent neural networks (RNN), like GRU-ODE-Bayes or ODE-RNN are well suited to model irregularly observed time series. While those models outperform existing discrete-time approaches, no theoretical guarantees for