ترغب بنشر مسار تعليمي؟ اضغط هنا

Precise Blaze Angle Measurements of Lithographically Fabricated Silicon Immersion Gratings

122   0   0.0 ( 0 )
 نشر من قبل Emily Lubar
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Silicon immersion gratings and grisms enable compact, near-infrared spectrographs with high throughput. These instruments find use in ground-based efforts to characterize stellar and exoplanet atmospheres, and in space-based observatories. Our grating fabrication technique uses x-ray crystallography to orient silicon parts prior to cutting, followed by lithography and wet chemical etching to produce the blaze. This process takes advantage of the crystal structure and relative difference in etching rates between the (100) and (111) planes such that we can produce parts that have surface errors < {lambda}/4. Previous measurements indicate that chemical etching can yield a final etched blaze that slightly differs from the orientation of the (111) plane. This difference can be corrected by the mechanical mount in the case of the immersion gratings, but doing so may compromise grating throughput due to shadowing. In the case of the grisms, failure to take the actual blaze into account will reduce the brightness of the undeviated ray. We report on multiple techniques to precisely measure the blaze of our in-house fabricated immersion gratings. The first method uses a scanning electron microscope to image the blaze profile, which yields a measurement precision of 0.5 degrees. The second method is an optical method of measuring the angle between blaze faces using a rotation stage, which yields a measurement precision of 0.2 degrees. Finally, we describe a theoretical blaze function modeling method, which we expect to yield a measurement precision of 0.1 degrees. With these methods, we can quantify the accuracy with which the wet etching produces the required blaze and further optimize grating and grism efficiencies.

قيم البحث

اقرأ أيضاً

We show that previously observed large disorder potentials in magnetic microtraps for neutral atoms are reduced by about two orders of magnitude when using atom chips with lithographically fabricated high quality gold layers. Using one dimensional Bo se-Einstein condensates, we probe the remaining magnetic field variations at surface distances down to a few microns. Measurements on a 100 um wide wire imply that residual variations of the current flow result from local properties of the wire.
The use of Immersed Gratings offers advantages for both space- and ground-based spectrographs. As diffraction takes place inside the high-index medium, the optical path difference and angular dispersion are boosted proportionally, thereby allowing a smaller grating area and a smaller spectrometer size. Short-wave infrared (SWIR) spectroscopy is used in space-based monitoring of greenhouse and pollution gases in the Earth atmosphere. On the extremely large telescopes currently under development, mid-infrared high-resolution spectrographs will, among other things, be used to characterize exo-planet atmospheres. At infrared wavelengths, Silicon is transparent. This means that production methods used in the semiconductor industry can be applied to the fabrication of immersed gratings. Using such methods, we have designed and built immersed gratings for both space- and ground-based instruments, examples being the TROPOMI instrument for the European Space Agency Sentinel-5 precursor mission, Sentinel-5 (ESA) and the METIS (Mid-infrared E-ELT Imager and Spectrograph) instrument for the European Extremely Large Telescope. Three key parameters govern the performance of such gratings: The efficiency, the level of scattered light and the wavefront error induced. In this paper we describe how we can optimize these parameters during the design and manufacturing phase. We focus on the tools and methods used to measure the actual performance realized and present the results. In this paper, the bread-board model (BBM) immersed grating developed for the SWIR-1 channel of Sentinel-5 is used to illustrate this process. Stringent requirements were specified for this grating for the three performance criteria. We will show that -with some margin- the performance requirements have all been met.
High-resolution ($R = lambda /Delta lambda > 2000$) x-ray absorption and emission line spectroscopy in the soft x-ray band is a crucial diagnostic for the exploration of the properties of ubiquitous warm and hot plasmas and their dynamics in the cosm ic web, galaxy clusters, galaxy halos, intragalactic space, and star atmospheres. Soft x-ray grating spectroscopy with $R > 10{,}000$ has been demonstrated with critical-angle transmission (CAT) gratings. CAT gratings combine the relaxed alignment and temperature tolerances and low mass of transmission gratings with high diffraction efficiency blazed in high orders. They are an enabling technology for the proposed Arcus grating explorer and were selected for the Lynx design reference mission grating spectrometer instrument. Both Arcus and Lynx require the manufacture of hundreds to perhaps $approx 2000$ large-area CAT gratings. We are developing new patterning and fabrication process sequences that are conducive to large-format volume processing on state-of-the-art 200 mm wafer tools. Recent x-ray tests on 200 nm-period gratings patterned using e-beam-written masks and 4x projection lithography in conjunction with silicon pore focusing optics demonstrated $R approx 10^4$ at 1.49 keV. Extending the grating depth from 4 $mu$m to 6 $mu$m is predicted to lead to significant improvements in diffraction efficiency and is part of our current efforts using a combination of deep reactive-ion etching and wet etching in KOH solution. We describe our recent progress in grating fabrication and report our latest diffraction efficiency and modeling results.
We describe a technique for fabricating micro- and nano-structures incorporating fluorescent defects in diamond with a positional accuracy in the hundreds of nanometers. Using confocal fluorescence microscopy and focused ion beam (FIB) etching we fir st locate a suitable defect with respect to registration marks on the diamond surface and then etch a structure using these coordinates. We demonstrate the technique here by etching an 8 micron diameter hemisphere positioned such that a single negatively charged nitrogen-vacancy defect lies at its origin. This type of structure increases the photon collection efficiency by removing refraction and aberration losses at the diamond-air interface. We make a direct comparison of the fluorescence photon count rate before and after fabrication and observe an 8-fold increase due to the presence of the hemisphere.
We have used diffraction gratings to simplify the fabrication, and dramatically increase the atomic collection efficiency, of magneto-optical traps using micro-fabricated optics. The atom number enhancement was mainly due to the increased beam captur e volume, afforded by the large area (4cm^2) shallow etch (200nm) binary grating chips. Here we provide a detailed theoretical and experimental investigation of the on-chip magneto-optical trap temperature and density in four different chip geometries using 87Rb, whilst studying effects due to MOT radiation pressure imbalance. With optimal initial MOTs on two of the chips we obtain both large atom number (2x10^7) _and_ sub-Doppler temperatures (50uK) after optical molasses.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا