ترغب بنشر مسار تعليمي؟ اضغط هنا

The Emergence of Electroweak Skyrmions through Higgs Bosons

64   0   0.0 ( 0 )
 نشر من قبل Michael Spannowsky
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Skyrmions are extended field configurations, initially proposed to describe baryons as topological solitons in an effective field theory of mesons. We investigate and confirm the existence of skyrmions within the electroweak sector of the Standard Model and study their properties. We find that the interplay of the electroweak sector with a dynamical Higgs field and the Skyrme term leads to a non-trivial vacuum structure with the skyrmion and perturbative vacuum sectors separated by a finite energy barrier. We identify dimension-8 operators that stabilise the electroweak skyrmion as a spatially localised soliton field configuration with finite size. Such operators are induced generically by a wide class of UV models. To calculate the skyrmion energy and radius we use a neural network method. Electroweak skyrmions are non-topological solitons but are exponentially long lived, and we find that the electroweak skyrmion is a viable dark matter candidate. While the skyrmion production cross section at collider experiments is suppressed, measuring the size of the Skyrme term in multi-Higgs-production processes at high-energy colliders is a promising avenue to probe the existence of electroweak skyrmions.

قيم البحث

اقرأ أيضاً

We study the existence of skyrmions in the presence of all the electroweak degrees of freedom, including a dynamical Higgs boson, with the electroweak symmetry being non-linearly realized in the scalar sector. For this, we use the formulation of the Higgs Effective Field Theory (HEFT). In contrast with the linear realization, a well-defined winding number exists in HEFT for all scalar field configurations. We classify the effective operators that can potentially stabilize the skyrmions and numerically find the region in parameter spaces that support them. We do so by minimizing the static energy functional using neural networks. This method allows us to obtain the minimal-energy path connecting the vacuum to the skyrmion configuration and calculate its mass and radius. Since skyrmions are not expected to be produced at colliders, we explore the experimental and theoretical bounds on the operators that generate them. Finally, we briefly consider the possibility of skyrmions being dark matter candidates.
Isolated lepton momenta, in particular their directions are the most precisely measured quantities in pp collisions at LHC. This offers opportunities for multitude of precision measurements. It is of practical importance to verify if precision measur ements with lep- tons in the final state require all theoretical effects evaluated simultaneously or if QED bremsstrahlung in the final state can be separated without unwanted precision loss. Results for final state bremsstrahlung in the decays of narrow resonances are obtained from the Feynman rules of QED in an unambiguous way and can be controlled with a very high precision. Also for resonances of non-negligible width, if calculations are appropriately performed, such separation from the remaining electroweak effects can be expected. Our paper is devoted to validation that final state QED bremsstrahlung can indeed be separated from the rest of QCD and electroweak effects, in the production and decay of Z and W bosons, and to estimation of the resulting systematic error. The quantitative discussion is based on Monte Carlo programs PHOTOS and SANC, as well as on KKMC which is used for benchmark results. We show, that for a large classes of W and Z boson observables as used at LHC, theoretical error on photonic bremsstrahlung is 0.1 or 0.2%, depending on the program options used. An overall theoretical error on QED final state radiation, i.e. taking into account missing corrections due to pair emission and interference with initial state radiation is estimated respectively at 0.2% or 0.3% again depending on the program option used.
We determine the model-independent component of the couplings of axions to electroweak gauge bosons, induced by the minimal coupling to QCD inherent to solving the strong CP problem. The case of the invisible QCD axion is developed first, and the imp act on $W$ and $Z$ axion couplings is discussed. The analysis is extended next to the generic framework of heavy true axions and low axion scales, corresponding to scenarios with enlarged confining sector. The mass dependence of the coupling of heavy axions to photons, $W$ and $Z$ bosons is determined. Furthermore, we perform a two-coupling-at-a-time phenomenological study where the gluonic coupling together with individual gauge boson couplings are considered. In this way, the regions excluded by experimental data for the axion-$WW$, axion-$ZZ$ and axion-$Zgamma$ couplings are determined and analyzed together with the usual photonic ones. The phenomenological results apply as well to ALPs which have anomalous couplings to both QCD and the electroweak bosons.
Simple symmetry arguments applied to the third generation lead to a prediction: there exist new sequential Higgs doublets with masses of order $lesssim 5 $ TeV, with approximately universal Higgs-Yukawa coupling constants, $gsim 1$. This is calibrate d by the known Higgs boson mass, the top quark Higgs-Yukawa coupling, and the $b$-quark mass. A new massive weak-isodoublet, $H_b$, coupled to the $b$-quark with $gsim 1$ is predicted, and may be accessible to the LHC at $13$ TeV, and definitively at the energy upgraded LHC of $26$ TeV. The extension to leptons generates a new $H_tau$ and a possible $H_{ u_tau}$ doublet. The accessibility of the latter depends upon whether the mass of the $tau$-neutrino is Dirac or Majorana.
We examine the prospects for discovering and elucidating the weakly-coupled Higgs sector at future collider experiments. The Higgs search consists of three phases: (i) discovery of a Higgs candidate, (ii) verification of the Higgs interpretation of t he signal, and (iii) precision measurements of Higgs sector properties. The discovery of one Higgs boson with Standard Model properties is not sufficient to expose the underlying structure of the electroweak symmetry breaking dynamics. It is critical to search for evidence for a non-minimal Higgs sector and/or new physics associated with electroweak symmetry breaking dynamics. An improvement in precision electroweak data at future colliders can play a useful role in confirming the theoretical interpretation of the Higgs search results.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا