ترغب بنشر مسار تعليمي؟ اضغط هنا

Modeling sidelobe response for ground-based mm-wavelength telescopes with the geometrical theory of diffraction

76   0   0.0 ( 0 )
 نشر من قبل Alexandre Erwin Adler
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Accurate optical modeling is important for the design and characterisation of current and next-generation experiments studying the Cosmic Microwave Background (CMB). Geometrical Optics (GO) cannot model diffractive effects. In this work, we discuss two methods that incorporate diffraction, Physical Optics (PO) and the Geometrical Theory of Diffraction (GTD). We simulate the optical response of a ground-based two-lens refractor design shielded by a ground screen with time-reversed simulations. In particular, we use GTD to determine the interplay between the design of the refractors forebaffle and the sidelobes caused by interaction with the ground screen.



قيم البحث

اقرأ أيضاً

64 - Jon E. Gudmundsson 2019
We present a compact two-lens HDPE f/1.6 refractor design that is capable of supporting a 28-deg diffraction-limited field of view at 1-mm wavelengths and contrast it to a similar two-lens refractor using silicon lenses. We compare the optical proper ties of these two systems as predicted by both geometrical and physical optics. The presented analysis suggests that by relaxing telecentricity requirements, a plastic two-lens refractor system can perform comparably to a similar silicon system across a wide field of view and wavelengths up to 1 mm. We show that for both telescope designs, cold stop spillover changes significantly across the field of view in a way that is somewhat inconsistent with Gaussian beam formalism and simple f-number scaling. We present results that highlight beam ellipticity dependence on both pixel location and pixel aperture size --- an effect that is challenging to reproduce in standard geometrical optics. We show that a silicon refractor design suffers from larger cross-polarization compared to the HDPE design. Our results address the limitations of solely relying on geometrical optics to assess relative performance of two optical systems. We discuss implications for future refractor designs.
The combination of Lucky Imaging with a low order adaptive optics system was demonstrated very successfully on the Palomar 5m telescope nearly 10 years ago. It is still the only system to give such high-resolution images in the visible or near infrar ed on ground-based telescope of faint astronomical targets. The development of AOLI for deployment initially on the WHT 4.2 m telescope in La Palma, Canary Islands, will be described in this paper. In particular, we will look at the design and status of our low order curvature wavefront sensor which has been somewhat simplified to make it more efficient, ensuring coverage over much of the sky with natural guide stars as reference object. AOLI uses optically butted electron multiplying CCDs to give an imaging array of 2000 x 2000 pixels.
The highest resolution images ever taken in the visible were obtained by combining Lucky Imaging and low order adaptive optics. This paper describes a new instrument to be deployed on the WHT 4.2m and GTC 10.4 m telescopes on La Palma, with particula r emphasis on the optical design and the expected system performance. A new design of low order wavefront sensor using photon counting CCD detectors and multi-plane curvature wavefront sensor will allow dramatically fainter reference stars to be used, allowing virtually full sky coverage with a natural guide star. This paper also describes a significant improvements in the efficiency of Lucky Imaging, important advances in wavefront reconstruction with curvature sensors and the results of simulations and sensitivity limits. With a 2 x 2 array of 1024 x 1024 photon counting EMCCDs, AOLI is likely to be the first of the new class of high sensitivity, near diffraction limited imaging systems giving higher resolution in the visible from the ground than hitherto been possible from space.
204 - Matt Dobbs , Eric Bissonnette , 2007
An FPGA based digital signal processing (DSP) system for biasing and reading out multiplexed bolometric detectors for mm-wavelength telescopes is presented. This readout system is being deployed for balloon-borne and ground based cosmology experiment s with the primary goal of measuring the signature of inflation with the Cosmic Microwave Background Radiation. The system consists of analog superconducting electronics running at 250mK and 4K, coupled to digital room temperature backend electronics described here. The digital electronics perform the real time functionality with DSP algorithms implemented in firmware. A soft embedded processor provides all of the slow housekeeping control and communications. Each board in the system synthesizes multi-frequency combs of 8 to 32 carriers in the MHz band to bias the detectors. After the carriers have been modulated with the sky-signal by the detectors, the same boards digitize the comb directly. The carriers are mixed down to base-band and low pass filtered. The signal bandwidth of 0.050 Hz - 100 Hz places extreme requirements on stability and requires powerful filtering techniques to recover the sky-signal from the MHz carriers.
68 - I.J.M. Crossfield 2016
The study of extrasolar planets has rapidly expanded to encompass the search for new planets, measurements of sizes and masses, models of planetary interiors, planetary demographics and occurrence frequencies, the characterization of planetary orbits and dynamics, and studies of these worlds complex atmospheres. Our insights into exoplanets dramatically advance whenever improved tools and techniques become available, and surely the largest tools now being planned are the optical/infrared Extremely Large Telescopes (ELTs). Two themes summarize the advantages of atmospheric studies with the ELTs: high angular resolution when operating at the diffraction limit and high spectral resolution enabled by the unprecedented collecting area of these large telescopes. This brief review describes new opportunities afforded by the ELTs to study the composition, structure, dynamics, and evolution of these planets atmospheres, while specifically focusing on some of the most compelling atmospheric science cases for four qualitatively different planet populations: highly irradiated gas giants, young, hot giant planets, old, cold gas giants, and small planets and Earth analogs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا