ترغب بنشر مسار تعليمي؟ اضغط هنا

Fast-forward scaling of atom-molecule conversion in Bose-Einstein condensates

54   0   0.0 ( 0 )
 نشر من قبل Jingjun Zhu
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Robust stimulated Raman exact passages are requisite for controlling nonlinear quantum systems, with the wide applications ranging from ultracold molecules, non-linear optics to superchemistry. Inspired by shortcuts to adiabaticity, we propose the fast-forward scaling of stimulated Raman adiabatic processes with the nonlinearity involved, describing the transfer from an atomic Bose-Einstein condensate to a molecular one by controllable external fields. The fidelity and robustness of atom-molecule conversion are shown to surpass those of conventional adiabatic passages, assisted by fast-forward driving field. Finally, our results are extended to the fractional stimulated Raman adiabatic processes for the coherent superposition of atomic and molecular states.



قيم البحث

اقرأ أيضاً

We consider a hybrid atom-optomechanical system consisting of a mechanical membrane inside an optical cavity and an atomic Bose-Einstein condensate outside the cavity. The condensate is confined in an optical lattice potential formed by a traveling l aser beam reflected off one cavity mirror. We derive the cavity-mediated effective atom-atom interaction potential, and find that it is non-uniform, site-dependent, and does not decay as the interatomic distance increases. We show that the presence of this effective interaction breaks the Z$_2$ symmetry of the system and gives rise to new quantum phases and phase transitions. When the long-range interaction dominates, the condensate breaks the translation symmetry and turns into a novel self-organized lattice-like state with increasing particle densities for sites farther away from the cavity. We present the phase diagram of the system, and investigate the stabilities of different phases by calculating their respective excitation spectra. The system can serve as a platform to explore various self-organized phenomena induced by the long-range interactions.
149 - S. Choi , B. Sundaram 2009
An atomic Bose-Einstein condensate (BEC) is often described as a macroscopic object which can be approximated by a coherent state. This, on the surface, would appear to indicate that its behavior should be close to being classical. In this paper, we clarify the extent of how classical a BEC is by exploring the semiclassical equations for BECs under the mean field Gaussian approximation. Such equations describe the dynamics of a condensate in the classical limit in terms of the variables < x > and < p > as well as their respective variances. We compare the semiclassical solution with the full quantum solution based on the Gross-Pitaevskii Equation (GPE) and find that the interatomic interactions which generate nonlinearity make the system less classical. On the other hand, many qualitative features are captured by the semiclassical equations, and the equations to be solved are far less computationally intensive than solving the GPE which make them ideal for providing quick diagnostics, and for obtaining new intuitive insight.
One-particle reduced density matrix functional theory would potentially be the ideal approach for describing Bose-Einstein condensates. It namely replaces the macroscopically complex wavefunction by the simple one-particle reduced density matrix, the refore provides direct access to the degree of condensation and still recovers quantum correlations in an exact manner. We eventually initiate and establish this novel theory by deriving the respective universal functional $mathcal{F}$ for general homogeneous Bose-Einstein condensates with arbitrary pair interaction. Most importantly, the successful derivation necessitates a particle-number conserving modification of Bogoliubov theory and a solution of the common phase dilemma of functional theories. We then illustrate this novel approach in several bosonic systems such as homogeneous Bose gases and the Bose-Hubbard model. Remarkably, the general form of $mathcal{F}$ reveals the existence of a universal Bose-Einstein condensation force which provides an alternative and more fundamental explanation for quantum depletion.
Interferometry with ultracold atoms promises the possibility of ultraprecise and ultrasensitive measurements in many fields of physics, and is the basis of our most precise atomic clocks. Key to a high sensitivity is the possibility to achieve long m easurement times and precise readout. Ultra cold atoms can be precisely manipulated at the quantum level, held for very long times in traps, and would therefore be an ideal setting for interferometry. In this paper we discuss how the non-linearities from atom-atom interactions on one hand allow to efficiently produce squeezed states for enhanced readout, but on the other hand result in phase diffusion which limits the phase accumulation time. We find that low dimensional geometries are favorable, with two-dimensional (2D) settings giving the smallest contribution of phase diffusion caused by atom-atom interactions. Even for time sequences generated by optimal control the achievable minimal detectable interaction energy $Delta E^{rm min}$ is on the order of 0.001 times the chemical potential of the BEC in the trap. From there we have to conclude that for more precise measurements with atom interferometers more sophisticated strategies, or turning off the interaction induced dephasing during the phase accumulation stage, will be necessary.
We analyze time-of-flight absorption images obtained with dilute Bose-Einstein con-densates released from shaken optical lattices, both theoretically and experimentally. We argue that weakly interacting, ultracold quantum gases in kilohertz-driven op tical potentials constitute equilibrium systems characterized by a steady-state distri-bution of Floquet-state occupation numbers. Our experimental results consistently indicate that a driven ultracold Bose gas tends to occupy a single Floquet state, just as it occupies a single energy eigenstate when there is no forcing. When the driving amplitude is sufficiently high, the Floquet state possessing the lowest mean energy does not necessarily coincide with the Floquet state connected to the ground state of the undriven system. We observe strongly driven Bose gases to condense into the former state under such conditions, thus providing nontrivial examples of dressed matter waves.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا