ترغب بنشر مسار تعليمي؟ اضغط هنا

Stress-controlled zero-field spin splitting in silicon carbide

139   0   0.0 ( 0 )
 نشر من قبل Andrey Anisimov Dr.
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the influence of static mechanical deformation on the zero-field splitting of silicon vacancies in silicon carbide at room temperature. We use AlN/6H-SiC heterostructures deformed by growth conditions and monitor the stress distribution as a function of distance from the heterointerface with spatially-resolved confocal Raman spectroscopy. The zero-field splitting of the V1/V3 and V2 centers in 6H-SiC, measured by optically-detected magnetic resonance, reveal significant changes at the heterointerface compared to the bulk value. This approach allows unambiguous determination of the spin-deformation interaction constant, which turns out to be $0.75 , mathrm{GHz}$ for the V1/V3 centers and $0.5 , mathrm{GHz}$ for the V2 centers. Provided piezoelectricity of AlN, our results offer a strategy to realize the on-demand fine tuning of spin transition energies in SiC by deformation.

قيم البحث

اقرأ أيضاً

175 - L. Grenet , M. Jamet , P. Noe 2009
In this letter, we show efficient electrical spin injection into a SiGe based textit{p-i-n} light emitting diode from the remanent state of a perpendicularly magnetized ferromagnetic contact. Electron spin injection is carried out through an alumina tunnel barrier from a Co/Pt thin film exhibiting a strong out-of-plane anisotropy. The electrons spin polarization is then analysed through the circular polarization of emitted light. All the light polarization measurements are performed without an external applied magnetic field textit{i.e.} in remanent magnetic states. The light polarization as a function of the magnetic field closely traces the out-of-plane magnetization of the Co/Pt injector. We could achieve a circular polarization degree of the emitted light of 3 % at 5 K. Moreover this light polarization remains almost constant at least up to 200 K.
Strain engineering has attracted great attention, particularly for epitaxial films grown on a different substrate. Residual strains of SiC have been widely employed to form ultra-high frequency and high Q factor resonators. However, to date the highe st residual strain of SiC was reported to be limited to approximately 0.6%. Large strains induced into SiC could lead to several interesting physical phenomena, as well as significant improvement of resonant frequencies. We report an unprecedented nano strain-amplifier structure with an ultra-high residual strain up to 8% utilizing the natural residual stress between epitaxial 3C SiC and Si. In addition, the applied strain can be tuned by changing the dimensions of the amplifier structure. The possibility of introducing such a controllable and ultra-high strain will open the door to investigating the physics of SiC in large strain regimes, and the development of ultra sensitive mechanical sensors.
197 - C. Kasper , D. Klenkert , Z. Shang 2019
Irradiation-induced lattice defects in silicon carbide (SiC) have already exceeded their previous reputation as purely performance-inhibiting. With their remarkable quantum properties, such as long room-temperature spin coherence and the possibility of downscaling to single-photon source level, they have proven to be promising candidates for a multitude of quantum information applications. One of the most crucial parameters of any quantum system is how long its quantum coherence can be preserved. By using the pulsed optically detected magnetic resonance (ODMR) technique, we investigate the spin-lattice relaxation time ($T_1$) and spin coherence time ($T_2$) of silicon vacancies in 4H-SiC created by neutron, electron and proton irradiation in a broad range of fluences. We also examine the effect of irradiation energy and sample annealing. We establish a robustness of the $T_1$ time against all types of irradiation and reveal a universal scaling of the $T_2$ time with the emitter density. Our results can be used to optimize the coherence properties of silicon vacancy qubits in SiC for specific tasks.
After the pioneering investigations into graphene-based electronics at Georgia Tech (GT), great strides have been made developing epitaxial graphene on silicon carbide (EG) as a new electronic material. EG has not only demonstrated its potential for large scale applications, it also has become an invaluable material for fundamental two-dimensional electron gas physics showing that only EG is on route to define future graphene science. It was long known that graphene mono and multilayers grow on SiC crystals at high temperatures in ultra-high vacuum. At these temperatures, silicon sublimes from the surface and the carbon rich surface layer transforms to graphene. However the quality of the graphene produced in ultrahigh vacuum is poor due to the high sublimation rates at relatively low temperatures. The GT team developed growth methods involving encapsulating the SiC crystals in graphite enclosures, thereby sequestering the evaporated silicon and bringing growth process closer to equilibrium. In this confinement controlled sublimation (CCS) process, very high quality graphene is grown on both polar faces of the SiC crystals. Since 2003, over 50 publications used CCS grown graphene, where it is known as the furnace grown graphene. Graphene multilayers grown on the carbon-terminated face of SiC, using the CCS method, were shown to consist of decoupled high mobility graphene layers. The CCS method is now applied on structured silicon carbide surfaces to produce high mobility nano-patterned graphene structures thereby demonstrating that EG is a viable contender for next-generation electronics. Here we present the CCS method and demonstrate several of epitaxial graphenes outstanding properties and applications.
75 - D. Simin , H. Kraus , A. Sperlich 2016
We demonstrate that silicon carbide (SiC) with natural isotope abundance can preserve a coherent spin superposition in silicon vacancies over unexpectedly long time approaching 0.1 seconds. The spin-locked subspace with drastically reduced decoherenc e rate is attained through the suppression of heteronuclear spin cross-talking by applying a moderate magnetic field in combination with dynamic decoupling from the nuclear spin baths. We identify several phonon-assisted mechanisms of spin-lattice relaxation, ultimately limiting quantum coherence, and find that it can be extremely long at cryogenic temperature, equal or even longer than 8 seconds. Our approach may be extended to other polyatomic compounds and open a path towards improved qubit memory for wafer-scale quantum techmologies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا