ﻻ يوجد ملخص باللغة العربية
Probing the radial collective oscillation of a trapped quantum system is an accurate experimental tool to investigate interactions and dimensionality effects. We consider a fully polarized quasi-one dimensional dipolar quantum gas of bosonic dysprosium atoms in a parabolic trap at zero temperature. We model the dipolar gas with an effective quasi-one dimensional Hamiltonian in the single-mode approximation, and derive the equation of state using a variational approximation based on the Lieb-Liniger gas Bethe Ansatz wavefunction or perturbation theory. We calculate the breathing mode frequencies while varying polarization angles by a sum-rule approach, and find them in good agreement with recent experimental findings.
By means of time-dependent density-matrix renormalization-group (TDMRG) we are able to follow the real-time dynamics of a single impurity embedded in a one-dimensional bath of interacting bosons. We focus on the impurity breathing mode, which is foun
We propose a variational approximation to the ground state energy of a one-dimensional gas of interacting bosons on the continuum based on the Bethe Ansatz ground state wavefunction of the Lieb-Liniger model. We apply our variational approximation to
We consider dipolar bosons in two tubes of one-dimensional lattices, where the dipoles are aligned to be maximally repulsive and the particle filling fraction is the same in each tube. In the classical limit of zero inter-site hopping, the particles
We have employed the theory of harmonically trapped dipolar Bose-Einstein condensates to examine the influence of a uniform magnetic field that rotates at an arbitrary angle to its own orientation. This is achieved by semi-analytically solving the di
We study the quantum ground state of ultracold bosons in a two-dimensional square lattice. The bosons interact via the repulsive dipolar interactions and s-wave scattering. The dynamics is described by the extended Bose-Hubbard model including correl