ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamical stellar masses of pre-main sequence stars in Lupus and Taurus obtained with ALMA surveys in comparison with stellar evolutionary models

70   0   0.0 ( 0 )
 نشر من قبل Teresa A. M. Braun
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We analysed archival molecular line data of pre-main sequence (PMS) stars in the Lupus and Taurus star-forming regions obtained with ALMA surveys with an integration time of a few minutes per source. We stacked the data of $^{13}$CO and C$^{18}$O (J = 2-1 & 3-2) and CN (N = 3-2, J = 7/2-5/2) lines to enhance the signal-to-noise ratios, and measured the stellar masses of 45 out of 67 PMS stars from the Keplerian rotation in their circumstellar disks. The measured dynamical stellar masses were compared to the stellar masses estimated from the spectroscopic measurements with seven different stellar evolutionary models. We found that the magnetic model of Feiden (2016) provides the best estimate of the stellar masses in the mass range of $0.6~M_{odot}leq M_{star} leq 1.3~M_{odot}$ with a deviation of $<$0.7$sigma$ from the dynamical masses, while all the other models underestimate the stellar masses in this mass range by 20% to 40%. In the mass range of $<0.6~M_{odot}$, the stellar masses estimated with the magnetic model of Feiden (2016) have a larger deviation ($>2sigma$) from the dynamical masses, and other, non-magnetic stellar evolutionary models of Siess et al. (2000), Baraffe et al. (2015) and Feiden (2016) show better agreements with the dynamical masses with the deviations of 1.4$sigma$ to 1.6$sigma$. Our results show the mass dependence of the accuracy of these stellar evolutionary models.

قيم البحث

اقرأ أيضاً

We present fundamental parameters for 110 canonical K- & M-type (1.3$-$0.13$M_odot$) Taurus-Auriga young stellar objects (YSOs). The analysis produces a simultaneous determination of effective temperature ($T_{rm eff}$), surface gravity ($log$ g), ma gnetic field strength (B), and projected rotational velocity ($v sin i$). Our method employed synthetic spectra and high-resolution (R$sim$45,000) near-infrared spectra taken with the Immersion GRating INfrared Spectrometer (IGRINS) to fit specific K-band spectral regions most sensitive to those parameters. The use of these high-resolution spectra reduces the influence of distance uncertainties, reddening, and non-photospheric continuum emission on the parameter determinations. The median total (fit + systematic) uncertainties were 170 K, 0.28 dex, 0.60 kG, 2.5 km s$^{-1}$ for $T_{rm eff}$, $log$ g, B, and $v sin i$, respectively. We determined B for 41 Taurus YSOs (upper limits for the remainder) and find systematic offsets (lower $T_{rm eff}$, higher $log$ g and $v sin i$) in parameters when B is measurable but not considered in the fit. The average $log$ g for the Class II and Class III objects differs by 0.23$pm$0.05dex, which is consistent with Class III objects being the more evolved members of the star-forming region. However, the dispersion in $log$ g is greater than the uncertainties, which highlights how the YSO classification correlates with age ($log$ g), yet there are exceptionally young (lower $log$ g) Class III YSOs and relatively old (higher $log$ g) Class II YSOs with unexplained evolutionary histories. The spectra from this work are provided in an online repository along with TW Hydrae Association (TWA) comparison objects and the model grid used in our analysis.
We examine the performance of standard PMS stellar evolution models against the accurately measured properties of a benchmark sample of 26 PMS stars in 13 EB systems. We provide a definitive compilation of all fundamental properties for the EBs. We a lso provide a definitive compilation of the various PMS model sets. In the H-R diagram, the masses inferred for the individual stars by the models are accurate to better than 10% above 1 Msun, but below 1 Msun they are discrepant by 50-100%. We find evidence that the failure of the models to match the data is linked to the triples in the EB sample; at least half of the EBs possess tertiary companions. Excluding the triples, the models reproduce the stellar masses to better than ~10% in the H-R diagram, down to 0.5 Msun, below which the current sample is fully contaminated by tertiaries. We consider several mechanisms by which a tertiary might cause changes in the EB properties and thus corrupt the agreement with stellar model predictions. We show that the energies of the tertiary orbits are comparable to that needed to potentially explain the scatter in the EB properties through injection of heat, perhaps involving tidal interaction. It seems from the evidence at hand that this mechanism, however it operates in detail, has more influence on the surface properties of the stars than on their internal structure, as the lithium abundances are broadly in good agreement with model predictions. The EBs that are members of young clusters appear individually coeval to within 20%, but collectively show an apparent age spread of ~50%, suggesting true age spreads in young clusters. However, this apparent spread in the EB ages may also be the result of scatter in the EB properties induced by tertiaries. [Abridged]
The accuracy of masses of pre-main sequence (PMS) stars derived from their locations on the Hertzsprung-Russell Diagram (HRD) can be tested by comparison with accurate and precise masses determined independently. We present 29 single stars in the Tau rus star-forming region (SFR) and 3 in the Ophiuchus SFR with masses measured dynamically to a precision of at least $10 %$. Our results include 9 updated mass determinations and 3 that have not had their dynamical masses published before. This list of stars with fundamental, dynamical masses, M$_{dyn}$, is drawn from a larger list of 39 targets in the Taurus SFR and 6 in the Ophiuchus SFR. Placing the stars with accurate and precise dynamical masses on HRDs that do not include internal magnetic fields underestimates the mass compared to M$_{dyn}$ by about $30 %$. Placing them on an HRD that does include magnetic fields yields mass estimates in much better agreement with M$_{dyn}$, with an average difference between M$_{dyn}$ and the estimated track mass of $0.01pm0.02$~msun. The ages of the stars, 3--10 MY on tracks that include magnetic fields, is older than the 1--3 MY indicated by the non-magnetic models. The older ages of T Tauri stars predicted by the magnetic models increase the time available for evolution of their disks and formation of the giant gas exoplanets. The agreement between our M$_{dyn}$ values and the masses on the magnetic field tracks provides indirect support for these older ages.
We present infrared photometry obtained with the IRAC camera on the Spitzer Space Telescope of a sample of 82 pre-main sequence stars and brown dwarfs in the Taurus star-forming region. We find a clear separation in some IRAC color-color diagrams bet ween objects with and without disks. A few ``transition objects are noted, which correspond to systems in which the inner disk has been evacuated of small dust. Separating pure disk systems from objects with remnant protostellar envelopes is more difficult at IRAC wavelengths, especially for objects with infall at low rates and large angular momenta. Our results generally confirm the IRAC color classification scheme used in previous papers by Allen et al. and Megeath et al. to distinguish between protostars, T Tauri stars with disks, and young stars without (inner) disks. The observed IRAC colors are in good agreement with recent improved disk models, and in general accord with models for protostellar envelopes derived from analyzing a larger wavelength region. We also comment on a few Taurus objects of special interest. Our results should be useful for interpreting IRAC results in other, less well-studied star-forming regions.
We report the discovery that the pre-main sequence object LkCa3 in the Taurus-Auriga star-forming region is a hierarchical quadruple system of M stars. It was previously known to be a close (~0.5 arc sec) visual pair, with one component being a moder ately eccentric 12.94-day single-lined spectroscopic binary. A re-analysis of archival optical spectra complemented with new near-infrared spectroscopy shows both visual components to be double-lined, the second one having a period of 4.06 days and a circular orbit. In addition to the orbital elements, we determine optical and near-infrared flux ratios, effective temperatures, and projected rotational velocities for all four stars. Using existing photometric monitoring observations of the system that had previously revealed the rotational period of the primary in the longer-period binary, we detect also the rotational signal of the primary in the 4.06-day binary, which is synchronized with the orbital motion. With only the assumption of coevality, a comparison of all of these constraints with current stellar evolution models from the Dartmouth series points to an age of 1.4 Myr and a distance of 133 pc, consistent with previous estimates for the region and suggesting the system is on the near side of the Taurus complex. Similar comparisons of the properties of LkCa3 and of the well-known quadruple pre-main sequence system GG Tau with the widely used models from the Lyon series for a mixing length parameter of alpha_ML = 1.0 strongly favor the Dartmouth models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا