ﻻ يوجد ملخص باللغة العربية
We report the detection of the host galaxy of a damped Ly$alpha$ system (DLA) with log N(HI) $ [rm cm^{-2}]$ = $21.0 pm 0.10$ at $z approx 3.0091$ towards the background quasar SDSS J011852+040644 using the Palomar Cosmic Web Imager (PCWI) at the Hale (P200) telescope. We detect Ly$alpha$ emission in the dark core of the DLA trough at a 3.3$sigma$ confidence level, with Ly$alpha$ luminosity of $L_{rm Lyalpha}$ $rm = (3.8 pm 0.8) times 10^{42} erg s^{-1}$, corresponding to a star formation rate of $gtrsim 2 rm M_{odot} yr^{-1}$ (considering a lower limit on Ly$alpha$ escape fraction $f_{esc}^{Ly{alpha}} sim 2%$) as typical for Lyman break galaxies at these redshifts. The Ly$alpha$ emission is blueshifted with respect to the systemic redshift derived from metal absorption lines by $281 pm 43$ km/s. The associated galaxy is at very small impact parameter of $lesssim 12 rm kpc$ from the background quasar, which is in line with the observed anticorrelation between column density and impact parameter in spectroscopic searches tracing the large-scale environments of DLA host galaxies.
We present Keck/OSIRIS infrared IFU observations of the $z = $ 3.153 sub-DLA DLA2233+131, previously detected in absorption to a background quasar and studied with single slit spectroscopy and PMAS integral field spectroscopy (IFU). We used the Laser
(Abridged) We performed a spectroscopic galaxy survey, complete to m<20.3 (L_B>0.15L_B* at z=0.3), within 100x100 of the quasar Q1127-145 (z=1.18). The VLT/UVES quasar spectrum contains three z<0.33 MgII absorption systems. We obtained eight new gala
We study the average Ly$alpha$ emission associated with high-$z$ strong (log $N$(H I) $ge$ 21) damped Ly$alpha$ systems (DLAs). We report Ly$alpha$ luminosities ($L_{rm Lyalpha}$) for the full as well as various sub-samples based on $N$(H I), $z$, $(
A prediction of the classic active galactic nuclei (AGN) unification model is the presence of ionisation cones with different orientations depending on the AGN type. Confirmations of this model exist for present times, but it is less clear in the ear
We investigate how damped Lyman-$alpha$ absorbers (DLAs) at z ~ 2-3, detected in large optical spectroscopic surveys of quasars, trace the population of star-forming galaxies. Building on previous results, we construct a model based on observed and p