ﻻ يوجد ملخص باللغة العربية
We show that the universal minimimal proximal flow and the universal minimal strongly proximal flow of a discrete group can be realized as the Stone spaces of translation invariant Boolean algebras of subsets of the group satisfying a higher order notion of syndeticity. We establish algebraic, combinatorial and topological dynamical characterizations of these subsets that we use to obtain new necessary and sufficient conditions for strong amenability and amenability. We also characterize dense orbit sets, answering a question of Glasner, Tsankov, Weiss and Zucker.
We study amenability of definable groups and topological groups, and prove various results, briefly described below. Among our main technical tools, of interest in its own right, is an elaboration on and strengthening of the Massicot-Wagner version
We prove that the alternating group of a topologically free action of a countably infinite group $Gamma$ on the Cantor set has the property that all of its $ell^2$-Betti numbers vanish and, in the case that $Gamma$ is amenable, is stable in the sense
In this paper, the notion of proper proximality (introduced in [BIP18]) is studied for various families of groups that act on trees. We show that if a group acts non-elementarily by isometries on a tree such that for any two edges, the intersection o
We give a new perspective on the homological characterisations of amenability given by Johnson in the context of bounded cohomology and by Block and Weinberger in the context of uniformly finite homology. We examine the interaction between their theo
In this paper we define the notion of monic representation for the $C^*$-algebras of finite higher-rank graphs with no sources, and undertake a comprehensive study of them. Monic representations are the representations that, when restricted to the co