ترغب بنشر مسار تعليمي؟ اضغط هنا

Performance of Large-Format Deformable Mirrors Constructed with TNO Variable Reluctance Actuators

72   0   0.0 ( 0 )
 نشر من قبل Rachel Bowens-Rubin
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Advancements in making high-efficiency actuators are an enabling technology for building the next generation of large-format deformable mirrors. The Netherlands Organization for Applied Scientific Research (TNO) has developed a new style of variable-reluctance actuator that requires approximately eighty times less power to operate as compared to the traditional style of voice-coil actuators. We present the performance results from laboratory testing of TNOs 57-actuator large-format deformable mirror from measuring the influence functions, linearity, hysteresis, natural shape flattening, actuator cross-coupling, creep, repeatability, and actuator lifetime. We measure a linearity of 99.4 +- 0.33% and hysteresis of 2.10 +- 0.23% over a stroke of 10 microns, indicating that this technology has strong potential for use in on-sky adaptive secondary mirrors (ASMs). We summarize plans for future lab prototypes and ASMs that will further demonstrate this technology.

قيم البحث

اقرأ أيضاً

The MagAO-X instrument is an upgrade of the Magellan AO system that will introduce extreme adaptive optics capabilities for high-contrast imaging at visible and near-infrared wavelengths. A central component of this system is a 2040-actuator microele ctromechanical (MEMS) deformable mirror (DM) from Boston Micromachines Corp. (BMC) that will operate at 3.63 kHz for high-order wavefront control. Two additional DMs from ALPAO will perform low-order and non-common-path science-arm wavefront correction. The accuracy of the wavefront correction is limited by our ability to command these DMs to a desired shape, which requires a careful characterization of each DM surface. We have developed a characterization pipeline that uses a Zygo Verifire Interferometer to measure the surface response and a Karhunen-Lo`eve transform to remove noise from our measurements. We present our progress in the characterization process and the results of our pipeline applied to an ALPAO DM97 and a BMC Kilo-DM, demonstrating the ability to drive the DMs to a flat of $lesssim$ 2nm and $lesssim$ 4nm RMS in our beam footprint on the University of Arizona Wavefront Control (UAWFC) testbed.
The MagAO-X instrument is a new extreme adaptive optics system for high-contrast imaging at visible and near-infrared wavelengths on the Magellan Clay Telescope. A central component of this system is a 2040-actuator microelectromechanical deformable mirror (DM) from Boston Micromachines Corp. that operates at 3.63 kHz for high-order wavefront control (the tweeter). Two additional DMs from ALPAO perform the low-order (the woofer) and non-common-path science-arm wavefront correction (the NCPC DM). Prior to integration with the instrument, we characterized these devices using a Zygo Verifire Interferometer to measure each DM surface. We present the results of the characterization effort here, demonstrating the ability to drive tweeter to a flat of 6.9 nm root mean square (RMS) surface (and 0.56 nm RMS surface within its control bandwidth), the woofer to 2.2 nm RMS surface, and the NCPC DM to 2.1 nm RMS surface over the MagAO-X beam footprint on each device. Using focus-diversity phase retrieval on the MagAO-X science cameras to estimate the internal instrument wavefront error (WFE), we further show that the integrated DMs correct the instrument WFE to 18.7 nm RMS, which, combined with a 11.7% pupil amplitude RMS, produces a Strehl ratio of 0.94 at H$alpha$.
67 - J. Dick , A. Bonardi , S. Bressel 2015
The Cherenkov Telescope Array (CTA) is the next generation Cherenkov telescope facility. It will consist of a large number of segmented-mirror telescopes of three different diameters, placed in two locations, one in the northern and one in the southe rn hemisphere, thus covering the whole sky. The total number of mirror tiles will be on the order of 10,000, corresponding to a reflective area of ~10^4 m^2. The Institute for Astronomy and Astrophysics in Tubingen (IAAT) is currently developing mirror control alignment mechanics, electronics, and software optimized for the medium sized telescopes. In addition, IAAT is participating in the CTA mirror prototype testing. In this paper we present the status of the current developments, the main results of recent tests, and plans for the production phase of the mirror control system. We also briefly present the Tubingen facility for mirror testing.
Long-term stability of deformable mirrors (DM) is a critical performance requirement for instruments requiring open-loop corrections. The effects of temperature changes in the DM performance are equally critical for such instruments. This paper inves tigates the long-term stability of three different Iris AO PTT111 DMs that were calibrated at different times ranging from 13 months to nearly 29 months prior to subsequent testing. Performance testing showed that only a small increase in positioning errors occurred from the initial calibration date to the test dates. The increases in errors ranged from as little as 1.38 nm rms after 18 months to 5.68 nm rms after 29 months. The paper also studies the effects of small temperature changes, up to 6.2{deg}C around room temperature. For three different arrays, the errors ranged from 0.62-1.42 nm rms/{deg}C. Removing the effects of packaging shows that errors are $le$0.50 nm rms/{deg}C. Finally, measured data showed that individual segments deformed $le$0.11 nm rms/{deg}C when heated.
The Very Large Telescope Interferometer Auxiliary Telescopes will soon be equipped with an adaptive optics system called NAOMI. The corrective optics deformable mirror is the commercial DM241 from ALPAO. Being part of an interferometer operating from visible to mid-infrared, the DMs of NAOMI face several challenges (high level of reliability, open-loop chopping, piston-free control, WFS/DM pupil rotation, high desired bandwidth and stroke). We here describe our extensive characterization of the DMs through measurements and simulations. We summarize the operational scenario we have defined to handle the specific mirror properties. We conclude that the ALPAO DMs have overall excellent properties that fulfill most of the stringent requirements and that deviations from specifications are easily handled. To our knowledge, NAOMI will be the first astronomical system with a command in true Zernike modes (allowing software rotation), and the first astronomical system in which a chopping is performed with the deformable mirror (5 sky, at 5~Hz).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا