ﻻ يوجد ملخص باللغة العربية
We propose and study a one-dimensional $2times 2$ hyperbolic Eulerian system with local relaxation from critical threshold phenomena perspective. The system features dynamic transition between strictly and weakly hyperbolic. For different classes of relaxation we identify intrinsic critical thresholds for initial data that distinguish global regularity and finite time blowup. For relaxation independent of density, we estimate bounds on density in terms of velocity where the system is strictly hyperbolic.
We propose and study a nonlocal Euler system with relaxation, which tends to a strictly hyperbolic system under the hyperbolic scaling limit. An independent proof of the local existence and uniqueness of this system is presented in any spatial dimens
We consider a multi-dimensional scalar wave equation with memory corresponding to the viscoelastic material described by a generalized Zener model. We deduce that this relaxation system is an example of a non-strictly hyperbolic system satisfying Maj
The behavior of solutions to an initial boundary value problem for a hyperbolic system with relaxation is studied when the relaxation parameter is small, by using the method of Fourier Series and the energy method.
We investigate inverse boundary problems associated with a time-dependent semilinear hyperbolic equation, where both nonlinearity and sources (including initial displacement and initial velocity) are unknown. We establish in several generic scenarios
A hyperbolic relaxation of the classical Navier-Stokes problem in 2D bounded domain with Dirichlet boundary conditions is considered. It is proved that this relaxed problem possesses a global strong solution if the relaxation parameter is small and t