ﻻ يوجد ملخص باللغة العربية
We study the problem of fairly allocating a divisible resource, also known as cake cutting, with an additional requirement that the shares that different agents receive should be sufficiently separated from one another. This captures, for example, constraints arising from social distancing guidelines. While it is sometimes impossible to allocate a proportional share to every agent under the separation requirement, we show that the well-known criterion of maximin share fairness can always be attained. We then establish several computational properties of maximin share fairness -- for instance, the maximin share of an agent cannot be computed exactly by any finite algorithm, but can be approximated with an arbitrarily small error. In addition, we consider the division of a pie (i.e., a circular cake) and show that an ordinal relaxation of maximin share fairness can be achieved.
We study the recently introduced cake-cutting setting in which the cake is represented by an undirected graph. This generalizes the canonical interval cake and allows for modeling the division of road networks. We show that when the graph is a forest
We study the envy-free cake-cutting problem for $d+1$ players with $d$ cuts, for both the oracle function model and the polynomial time function model. For the former, we derive a $theta(({1overepsilon})^{d-1})$ time matching bound for the query comp
Cake-cutting protocols aim at dividing a ``cake (i.e., a divisible resource) and assigning the resulting portions to several players in a way that each of the players feels to have received a ``fair amount of the cake. An important notion of fairness
The long wavelength modes lost to bright foregrounds in the interferometric 21-cm surveys can partially be recovered using a forward modeling approach that exploits the non-linear coupling between small and large scales induced by gravitational evolu
This paper is part of an ongoing endeavor to bring the theory of fair division closer to practice by handling requirements from real-life applications. We focus on two requirements originating from the division of land estates: (1) each agent should