ﻻ يوجد ملخص باللغة العربية
In the Gaia era, understanding the effects of perturbations of the Galactic disc is of major importance in the context of dynamical modelling. In this theoretical paper, we extend previous work in which, making use of the epicyclic approximation, the linearized Boltzmann equation had been used to explicitly compute, away from resonances, the perturbed distribution function of a Galactic thin disc population in the presence of a non-axisymmetric perturbation of constant amplitude. Here we improve this theoretical framework in two distinct ways in the new code that we present. First, we use better estimates for the action-angle variables away from quasi-circular orbits, computed from the AGAMA software, and we present an efficient routine to numerically re-express any perturbing potential in these coordinates with an accuracy well below the percent level. The use of more accurate action estimates allows us to identify resonances such as the outer 1:1 bar resonance at larger azimuthal velocities than the outer Lindblad resonance, and to extend our previous theoretical results well above the Galactic plane, where we explicitly show how they differ from the epicyclic approximation. In particular, the displacement of resonances in velocity space as a function of height can in principle constrain the 3D structure of the Galactic potential. Second, we allow the perturbation to be time-dependent, thereby allowing us to model the effect of transient spiral arms or of a growing bar. The theoretical framework and tools presented here will be useful for a thorough analytical dynamical modelling of the complex velocity distribution of disc stars as measured by past and upcoming Gaia data releases.
We present an approach to the design of distribution functions that depend on the phase-space coordinates through the action integrals. The approach makes it easy to construct a dynamical model of a given stellar component. We illustrate the approach
We have performed a NLTE analysis of the infrared oxygen triplet for a large number of cepheid spectra obtained with the Hobby-Eberly telescope. These data were combined with our previous NLTE results for the stars observed with Max Planck Gesellscha
We estimate the 3D density profile of the Galactic dark matter (DM) halo within $r lesssim 30$ kpc from the Galactic centre by using the astrometric data for halo RR Lyrae stars from Gaia DR2. We model both the stellar halo distribution function and
We use kinematical and chemical properties of 754 Corot stars to characterise the stellar populations of the Milky Way disc in three beams close the Galactic plane. From the atmospheric parameters derived in Gazzano et al. (2010) with the Matisse alg
We show that the stellar surface-brightness profiles in disc galaxies---observed to be approximately exponential---can be explained if radial migration efficiently scrambles the individual stars angular momenta while conserving the circularity of the