ﻻ يوجد ملخص باللغة العربية
Nambu Quantum Mechanics, proposed in Phys. Lett. B536, 305 (2002), is a deformation of canonical Quantum Mechanics in which only the time-evolution of the phases of energy eigenstates is modified. We discuss the effect this theory will have on oscillation phenomena, and place a bound on the deformation parameters utilizing the data on the atmospheric neutrino mixing angle $theta_{23}$.
We briefly illustrate a few tests of quantum mechanics which can be performed with entangled neutral kaon pairs at a Phi-factory. This includes a quantitative formulation of Bohrs complementarity principle, the quantum eraser phenomenon and various forms of Bell inequalities.
We study the effectiveness of the numerical bootstrap techniques recently developed in arXiv:2004.10212 for quantum mechanical systems. We find that for a double well potential the bootstrap method correctly captures non-perturbative aspects. Using t
A concept of kinetic energy in quantum mechanics is analyzed. Kinetic energy is a non-zero positive value in many cases of bound states, when a wave function is a real-valued one and there are no visible motion and flux. This can be understood, using
A modified version of relational quantum mechanics is developed based on the three following ideas. An observer can develop an internally consistent description of the universe but it will, of necessity, differ in particulars from the description dev
An approach to study a generalization of the classical-quantum transition for general systems is proposed. In order to develop the idea, a deformation of the ladder operators algebra is proposed that contains a realization of the quantum group $SU(2)