ﻻ يوجد ملخص باللغة العربية
This paper is a contribution to the search for efficient and high-level mathematical tools to specify and reason about (abstract) programming languages or calculi. Generalising the reduction monads of Ahrens et al., we introduce transition monads, thus covering new applications such as lambda-bar-mu-calculus, pi-calculus, Positive GSOS specifications, differential lambda-calculus, and the big-step, simply-typed, call-by-value lambda-calculus. Moreover, we design a suitable notion of signature for transition monads.
We give a conceptual treatment of the notion of joints, marginals, and independence in the setting of categorical probability. This is achieved by endowing the usual probability monads (like the Giry monad) with a monoidal and an opmonoidal structure
It has been an open question as to whether the Modular Structural Operational Semantics framework can express the dynamic semantics of call/cc. This paper shows that it can, and furthermore, demonstrates that it can express the more general delimited control operators control and shift.
We reflect on programming with complicated effects, recalling an undeservingly forgotten alternative to monadic programming and checking to see how well it can actually work in modern functional languages. We adopt and argue the position of factoring
We consider three monads on Top, the category of topological spaces, which formalize topological aspects of probability and possibility in categorical terms. The first one is the Hoare hyperspace monad H, which assigns to every space its space of clo
We make a formal analogy between random sampling and fresh name generation. We show that quasi-Borel spaces, a model for probabilistic programming, can soundly interpret Starks $ u$-calculus, a calculus for name generation. Moreover, we prove that th