ترغب بنشر مسار تعليمي؟ اضغط هنا

Market2Dish: Health-aware Food Recommendation

82   0   0.0 ( 0 )
 نشر من قبل Wenjie Wang
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

With the rising incidence of some diseases, such as obesity and diabetes, a healthy diet is arousing increasing attention. However, most existing food-related research efforts focus on recipe retrieval, user preference-based food recommendation, cooking assistance, or the nutrition and calorie estimation of dishes, ignoring the personalized health-aware food recommendation. Therefore, in this work, we present a personalized health-aware food recommendation scheme, namely Market2Dish, mapping the ingredients displayed in the market to the healthy dishes eaten at home. The proposed scheme comprises three components, namely recipe retrieval, user-health profiling, and health-aware food recommendation. In particular, recipe retrieval aims to acquire the ingredients available to the users, and then retrieve recipe candidates from a large-scale recipe dataset. User health profiling is to characterize the health conditions of users by capturing the textual health-related information crawled from social networks. Specifically, to solve the issue that the health-related information is extremely sparse, we incorporate a word-class interaction mechanism into the proposed deep model to learn the fine-grained correlations between the textual tweets and pre-defined health concepts. For the health-aware food recommendation, we present a novel category-aware hierarchical memory network-based recommender to learn the health-aware user-recipe interactions for better food recommendation. Moreover, extensive experiments demonstrate the effectiveness of the health-aware food recommendation scheme.

قيم البحث

اقرأ أيضاً

Recommender systems take inputs from user history, use an internal ranking algorithm to generate results and possibly optimize this ranking based on feedback. However, often the recommender system is unaware of the actual intent of the user and simpl y provides recommendations dynamically without properly understanding the thought process of the user. An intelligent recommender system is not only useful for the user but also for businesses which want to learn the tendencies of their users. Finding out tendencies or intents of a user is a difficult problem to solve. Keeping this in mind, we sought out to create an intelligent system which will keep track of the users activity on a web-application as well as determine the intent of the user in each session. We devised a way to encode the users activity through the sessions. Then, we have represented the information seen by the user in a high dimensional format which is reduced to lower dimensions using tensor factorization techniques. The aspect of intent awareness (or scoring) is dealt with at this stage. Finally, combining the user activity data with the contextual information gives the recommendation score. The final recommendations are then ranked using filtering and collaborative recommendation techniques to show the top-k recommendations to the user. A provision for feedback is also envisioned in the current system which informs the model to update the various weights in the recommender system. Our overall model aims to combine both frequency-based and context-based recommendation systems and quantify the intent of a user to provide better recommendations. We ran experiments on real-world timestamped user activity data, in the setting of recommending reports to the users of a business analytics tool and the results are better than the baselines. We also tuned certain aspects of our model to arrive at optimized results.
73 - Fan Liu , Zhiyong Cheng , Lei Zhu 2021
Graph Convolution Networks (GCNs) manifest great potential in recommendation. This is attributed to their capability on learning good user and item embeddings by exploiting the collaborative signals from the high-order neighbors. Like other GCN model s, the GCN based recommendation models also suffer from the notorious over-smoothing problem - when stacking more layers, node embeddings become more similar and eventually indistinguishable, resulted in performance degradation. The recently proposed LightGCN and LR-GCN alleviate this problem to some extent, however, we argue that they overlook an important factor for the over-smoothing problem in recommendation, that is, high-order neighboring users with no common interests of a user can be also involved in the users embedding learning in the graph convolution operation. As a result, the multi-layer graph convolution will make users with dissimilar interests have similar embeddings. In this paper, we propose a novel Interest-aware Message-Passing GCN (IMP-GCN) recommendation model, which performs high-order graph convolution inside subgraphs. The subgraph consists of users with similar interests and their interacted items. To form the subgraphs, we design an unsupervised subgraph generation module, which can effectively identify users with common interests by exploiting both user feature and graph structure. To this end, our model can avoid propagating negative information from high-order neighbors into embedding learning. Experimental results on three large-scale benchmark datasets show that our model can gain performance improvement by stacking more layers and outperform the state-of-the-art GCN-based recommendation models significantly.
With the emergence of personality computing as a new research field related to artificial intelligence and personality psychology, we have witnessed an unprecedented proliferation of personality-aware recommendation systems. Unlike conventional recom mendation systems, these new systems solve traditional problems such as the cold start and data sparsity problems. This survey aims to study and systematically classify personality-aware recommendation systems. To the best of our knowledge, this survey is the first that focuses on personality-aware recommendation systems. We explore the different design choices of personality-aware recommendation systems, by comparing their personality modeling methods, as well as their recommendation techniques. Furthermore, we present the commonly used datasets and point out some of the challenges of personality-aware recommendation systems.
77 - Zhi Bian , Shaojun Zhou , Hao Fu 2021
For better user satisfaction and business effectiveness, more and more attention has been paid to the sequence-based recommendation system, which is used to infer the evolution of users dynamic preferences, and recent studies have noticed that the ev olution of users preferences can be better understood from the implicit and explicit feedback sequences. However, most of the existing recommendation techniques do not consider the noise contained in implicit feedback, which will lead to the biased representation of user interest and a suboptimal recommendation performance. Meanwhile, the existing methods utilize item sequence for capturing the evolution of user interest. The performance of these methods is limited by the length of the sequence, and can not effectively model the long-term interest in a long period of time. Based on this observation, we propose a novel CTR model named denoising user-aware memory network (DUMN). Specifically, the framework: (i) proposes a feature purification module based on orthogonal mapping, which use the representation of explicit feedback to purify the representation of implicit feedback, and effectively denoise the implicit feedback; (ii) designs a user memory network to model the long-term interests in a fine-grained way by improving the memory network, which is ignored by the existing methods; and (iii) develops a preference-aware interactive representation component to fuse the long-term and short-term interests of users based on gating to understand the evolution of unbiased preferences of users. Extensive experiments on two real e-commerce user behavior datasets show that DUMN has a significant improvement over the state-of-the-art baselines. The code of DUMN model has been uploaded as an additional material.
Production recommendation systems rely on embedding methods to represent various features. An impeding challenge in practice is that the large embedding matrix incurs substantial memory footprint in serving as the number of features grows over time. We propose a similarity-aware embedding matrix compression method called Saec to address this challenge. Saec clusters similar features within a field to reduce the embedding matrix size. Saec also adopts a fast clustering optimization based on feature frequency to drastically improve clustering time. We implement and evaluate Saec on Numerous, the production distributed machine learning system in Tencent, with 10-day worth of feature data from QQ mobile browser. Testbed experiments show that Saec reduces the number of embedding vectors by two orders of magnitude, compresses the embedding size by ~27x, and delivers the same AUC and log loss performance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا