ﻻ يوجد ملخص باللغة العربية
In the era of big data, variable selection is a key technology for handling high-dimensional problems with a small sample size but a large number of covariables. Different variable selection methods were proposed for different models, such as linear model, logistic model and generalized linear model. However, fewer works focused on variable selection for single index models, especially, for single index logistic model, due to the difficulty arose from the unknown link function and the slow mixing rate of MCMC algorithm for traditional logistic model. In this paper, we proposed a Bayesian variable selection procedure for single index logistic model by taking the advantage of Gaussian process and data augmentation. Numerical results from simulations and real data analysis show the advantage of our method over the state of arts.
In this article, we propose new Bayesian methods for selecting and estimating a sparse coefficient vector for skewed heteroscedastic response. Our novel Bayesian procedures effectively estimate the median and other quantile functions, accommodate non
We develop a Bayesian variable selection method, called SVEN, based on a hierarchical Gaussian linear model with priors placed on the regression coefficients as well as on the model space. Sparsity is achieved by using degenerate spike priors on inac
An important task in building regression models is to decide which regressors should be included in the final model. In a Bayesian approach, variable selection can be performed using mixture priors with a spike and a slab component for the effects su
Yang et al. (2016) proved that the symmetric random walk Metropolis--Hastings algorithm for Bayesian variable selection is rapidly mixing under mild high-dimensional assumptions. We propose a novel MCMC sampler using an informed proposal scheme, whic
In this paper we review the concepts of Bayesian evidence and Bayes factors, also known as log odds ratios, and their application to model selection. The theory is presented along with a discussion of analytic, approximate and numerical techniques. S