ﻻ يوجد ملخص باللغة العربية
In this paper, we propose a new approach to design globally convergent reduced-order observers for nonlinear control systems via contraction analysis and convex optimization. Despite the fact that contraction is a concept naturally suitable for state estimation, the existing solutions are either local or relatively conservative when applying to physical systems. To address this, we show that this problem can be translated into an off-line search for a coordinate transformation after which the dynamics is (transversely) contracting. The obtained sufficient condition consists of some easily verifiable differential inequalities, which, on one hand, identify a very general class of detectable nonlinear systems, and on the other hand, can be expressed as computationally efficient convex optimization, making the design procedure more systematic. Connections with some well-established approaches and concepts are also clarified in the paper. Finally, we illustrate the proposed method with several numerical and physical examples, including polynomial, mechanical, electromechanical and biochemical systems.
This paper introduces new techniques for using convex optimization to fit input-output data to a class of stable nonlinear dynamical models. We present an algorithm that guarantees consistent estimates of models in this class when a small set of repe
We propose a convex optimization procedure for black-box identification of nonlinear state-space models for systems that exhibit stable limit cycles (unforced periodic solutions). It extends the robust identification error framework in which a convex
We propose a framework to use Nesterovs accelerated method for constrained convex optimization problems. Our approach consists of first reformulating the original problem as an unconstrained optimization problem using a continuously differentiable ex
Atangana and Baleanu proposed a new fractional derivative with non-local and no-singular Mittag-Leffler kernel to solve some problems proposed by researchers in the field of fractional calculus. This new derivative is better to describe essential asp
The basic reproduction number $R_0$ is a fundamental quantity in epidemiological modeling, reflecting the typical number of secondary infections that arise from a single infected individual. While $R_0$ is widely known to scientists, policymakers, an