ترغب بنشر مسار تعليمي؟ اضغط هنا

Compositional effect on auto-oscillation behavior of Ni100-xFex/Pt spin Hall nano-oscillators

57   0   0.0 ( 0 )
 نشر من قبل Mohammad Haidar
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We demonstrate the compositional effect on the magnetodynamic and auto-oscillations properties of Ni100-xFex/Pt (x= 10 to 40) nanoconstriction based spin Hall nano-oscillators. Using spin-torque ferromagnetic resonance (ST-FMR) performed on microstrips, we measure a significant reduction in both damping and spin Hall efficiency with increasing Fe content, which lowers the spin pumping contribution. The strong compositional effect on spin Hall efficiency is primarily attributed to the increased saturation magnetization in Fe-rich devices. As a direct consequence, higher current densities are required to drive spin-wave auto-oscillations at higher microwave frequencies in Fe-rich nano-constriction devices. Our results establish the critical role of the compositional effect in engineering the magnetodynamic and auto-oscillation properties of spin Hall devices for microwav eand magnonic applications.



قيم البحث

اقرأ أيضاً

We study the current tunable microwave signal properties of nano-constriction based spin Hall nano-oscillators (SHNOs) in oblique magnetic fields as a function of the nano-constriction width, $w=$~50--140 nm. The threshold current is found to scale l inearly with $w$, defining a constant threshold current density of $J_{th}=$ 1.7 $times$ 10$^{8}$ A/cm$^2$. While the current dependence of the microwave frequency shows the same generic non-monotonic behavior for all $wgeqslant$ 80 nm, the quality of the generated microwave signal improves strongly with $w$, showing a linear $w$ dependence for both the total power and the linewidth. As a consequence, the peak power for a 140 nm nano-constriction is about an order of magnitude higher than that of a 80 nm nano-constriction. The smallest nano-constriction, $w=$ 50 nm, exhibits a different behavior with a higher power and a worse linewidth indicating a crossover into a qualitatively different narrow-constriction regime.
We present an experimental study of the power spectrum of current-driven magnetization oscillations in MgO tunnel junctions under low bias. We find the existence of narrow spectral lines, down to 8 MHz in width at a frequency of 10.7 GHz, for small a pplied fields with clear evidence of an auto-oscillation threshold. Micromagnetics simulations indicate that the excited mode corresponds to an edge mode of the synthetic antiferromagnet.
In the last decade, two revolutionary concepts in nano magnetism emerged from research for storage technologies and advanced information processing. The first suggests the use of magnetic domain walls (DWs) in ferromagnetic nanowires to permanently s tore information in DW racetrack memories. The second proposes a hardware realisation of neuromorphic computing in nanomagnets using nonlinear magnetic oscillations in the GHz range. Both ideas originate from the transfer of angular momentum from conduction electrons to localised spins in ferromagnets, either to push data encoded in DWs along nanowires or to sustain magnetic oscillations in artificial neurones. Even though both concepts share a common ground, they live on very different time scales which rendered them incompatible so far. Here, we bridge both ideas by demonstrating the excitation of magnetic auto-oscillations inside nano-scale DWs using pure spin currents.
Electrical detection of topological magnetic textures such as skyrmions is currently limited to conducting materials. While magnetic insulators offer key advantages for skyrmion technologies with high speed and low loss, they have not yet been explor ed electrically. Here, we report a prominent topological Hall effect in Pt/Tm$_3$Fe$_5$O$_{12}$ bilayers, where the pristine Tm$_3$Fe$_5$O$_{12}$ epitaxial films down to 1.25 unit cell thickness allow for tuning of topological Hall stability over a broad range from 200 to 465 K through atomic-scale thickness control. Although Tm$_3$Fe$_5$O$_{12}$ is insulating, we demonstrate the detection of topological magnetic textures through a novel phenomenon: spin-Hall topological Hall effect (SH-THE), where the interfacial spin-orbit torques allow spin-Hall-effect generated spins in Pt to experience the unique topology of the underlying skyrmions in Tm$_3$Fe$_5$O$_{12}$. This novel electrical detection phenomenon paves a new path for utilizing a large family of magnetic insulators in future skyrmion technologies.
High quality nanometer-thick (20 nm, 7 nm and 4 nm) epitaxial YIG films have been grown on GGG substrates using pulsed laser deposition. The Gilbert damping coefficient for the 20 nm thick films is 2.3 x 10-4 which is the lowest value reported for su b-micrometric thick films. We demonstrate Inverse spin Hall effect (ISHE) detection of propagating spin waves using Pt. The amplitude and the lineshape of the ISHE voltage correlate well to the increase of the Gilbert damping when decreasing thickness of YIG. Spin Hall effect based loss-compensation experiments have been conducted but no change in the magnetization dynamics could be detected.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا