ﻻ يوجد ملخص باللغة العربية
Probing magnetic fields in the interstellar medium (ISM) is notoriously challenging. Motivated by the modern theories of magnetohydrodynamic (MHD) turbulence and turbulence anisotropy, we introduce the Structure-Function Analysis (SFA) as a new approach to measure the magnetic field orientation and estimate the magnetization. We analyze the statistics of turbulent velocities in three-dimensional compressible MHD simulations through the second-order structure functions in both local and global reference frames. In the sub-Alfvenic turbulence with the magnetic energy larger than the turbulent energy, the SFA of turbulent velocities measured in the directions perpendicular and parallel to the magnetic field can be significantly different. Their ratio has a power-law dependence on the Alfven Mach number $M_A$, which is inversely proportional to the magnetic field strength. We demonstrate that the anisotropic structure functions of turbulent velocities can be used to estimate both the orientation and strength of magnetic fields. With turbulent velocities measured using different tracers, our approach can be generally applied to probing the magnetic fields in the multi-phase interstellar medium.
The interstellar turbulence is magnetized and thus anisotropic. The anisotropy of turbulent magnetic fields and velocities is imprinted in the related observables, rotation measures (RMs), and velocity centroids (VCs). This anisotropy provides valuab
We discuss magnetic pressure and density fluctuations in strongly turbulent isothermal MHD flows in 1+2/3 dimensions. We first consider simple nonlinear MHD waves, which allow us show that the slow and fast modes have different asymptotic dependences
Direct measurements of three-dimensional magnetic fields in the interstellar medium (ISM) are not achievable. However, the anisotropic nature of magnetohydrodynamic (MHD) turbulence provides a novel way of tracing the magnetic fields. Guided by the a
The rate of magnetic field diffusion plays an essential role in several astrophysical plasma processes. It has been demonstrated that the omnipresent turbulence in astrophysical media induces fast magnetic reconnection, which consequently leads to la
The predictions of mean-field electrodynamics can now be probed using direct numerical simulations of random flows and magnetic fields. When modelling astrophysical MHD, it is important to verify that such simulations are in agreement with observatio