ترغب بنشر مسار تعليمي؟ اضغط هنا

Proximity-induced spin-triplet superconductivity and edge supercurrent in the topological Kagome metal, $mathrm{K_{1-x}V_3Sb_5}$

328   0   0.0 ( 0 )
 نشر من قبل Yaojia Wang
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Materials with transition metals in triangular lattices are of great interest for their potential combination of exotic magnetism and electronic topology. Kagome nets, also known as trihexagonal, are of particular importance since the discovery of geometrically frustrated magnetism and massive Dirac fermions in crystals like Herbertsmithite and $mathrm{Fe_3Sn_2}$, respectively. Recently, $mathrm{K_{1-x}V_3Sb_5}$, was discovered to be a layered, topological metal with a Kagome net of vanadium, and shown to have a giant extrinsic anomalous Hall effect (AHE) related to its triangular lattice. Here, we fabricated Josephson Junctions (JJ) of $mathrm{K_{1-x}V_3Sb_5}$ and induced superconductivity over extremely long junction lengths (6 $mathrm{mu m}$). Surprisingly, through magnetoresistance and current vs. phase measurements, we observed evidence of both spin-triplet supercurrent and spatially localized conducting channels arising from topological edge states. This observation opens the door to studying the interplay of quantum magnetism, strong correlation, and topology as well as facile generation of spin-triplet supercurrent for quantum device applications.



قيم البحث

اقرأ أيضاً

Quasi-two-dimensional kagome metals AV3Sb5 (A = K, Rb, and Cs) have attracted much recent interest due to exotic quantum phenomena such as unconventional superconductivity, topological charge order and giant anomalous Hall effect. Here we report pres sure-induced reemergent superconductivity in CsV3Sb5 by electrical transport measurements under high pressures up to 47.9 GPa. We show that the superconducting critical temperature Tc is first enhanced by pressure and reaches its first maximum ~ 8.9 K at 0.8 GPa, then the Tc is suppressed by pressure and cannot be detected above 7.5 GPa, forming a dome-shaped superconducting phase diagram. Remarkably, upon further compression above 16.5 GPa, a new superconducting state arises, of which Tc is enhanced by pressure to a second maximum ~ 5.0 K and the reemergent superconductivity keeps robust up to 47.9 GPa. Combined with high-pressure synchrotron x-ray diffraction measurements that demonstrate the stability of the pristine hexagonal phase up to 43.1 GPa, we suggest that the reemergence of superconductivity in the V-based superconductor could be attributed to a pressure-induced Lifshitz transition.
103 - C. C. Zhao , L. S. Wang , W. Xia 2021
Recently superconductivity was discovered in the Kagome metal AV3Sb5 (A = K, Rb, and Cs), which has an ideal Kagome lattice of vanadium. These V-based superconductors also host charge density wave (CDW) and topological nontrivial band structure. Here we report the ultralow-temperature thermal conductivity and high pressure resistance measurements on CsV3Sb5 with Tc = 2.5 K, the highest among AV3Sb5. A finite residual linear term of thermal conductivity at zero magnetic field and its rapid increase in fields suggest nodal superconductivity. By applying pressure, the Tc of CsV3Sb5 increases first, then decreases to lower than 0.3 K at 11.4 GPa, showing a clear first superconducting dome peaked around 0.8 GPa. Above 11.4 GPa, superconductivity re-emerges, suggesting a second superconducting dome. Both nodal superconductivity and superconducting domes point to unconventional superconductivity in this V-based superconductor. While our finding of nodal superconductivity puts a strong constrain on the pairing state of the first dome, which should be related to the CDW instability, the superconductivity of the second dome may present another exotic pairing state in this ideal Kagome lattice of vanadium.
Superconducting topological crystalline insulators (TCI) are predicted to host new topological phases protected by crystalline symmetries, but available materials are insufficiently suitable for surface studies. To induce superconductivity at the sur face of a prototypical TCI SnTe, we use molecular beam epitaxy to grow a heterostructure of SnTe and a high-Tc superconductor Fe(Te,Se), utilizing a buffer layer to bridge the large lattice mismatch between SnTe and Fe(Te,Se). Using low-temperature scanning tunneling microscopy and spectroscopy, we measure a prominent spectral gap on the surface of SnTe, and demonstrate its superconducting origin by its dependence on temperature and magnetic field. Our work provides a new platform for atomic-scale investigations of emergent topological phenomena in superconducting TCIs.
Cooper pairs in superconductors are normally spin singlet. Nevertheless, recent studies suggest that spin-triplet Cooper pairs can be created at carefully engineered superconductor-ferromagnet interfaces. If Cooper pairs are spin-polarized they would transport not only charge but also a net spin component, but without dissipation, and therefore minimize the heating effects associated with spintronic devices. Although it is now established that triplet supercurrents exist, their most interesting property - spin - is only inferred indirectly from transport measurements. In conventional spintronics, it is well known that spin currents generate spin-transfer torques that alter magnetization dynamics and switch magnetic moments. The observation of similar effects due to spin-triplet supercurrents would not only confirm the net spin of triplet pairs but also pave the way for applications of superconducting spintronics. Here, we present a possible evidence for spin-transfer torques induced by triplet supercurrents in superconductor/ferromagnet/superconductor (S/F/S) Josephson junctions. Below the superconducting transition temperature T_c, the ferromagnetic resonance (FMR) field at X-band (~ 9.0 GHz) shifts rapidly to a lower field with decreasing temperature due to the spin-transfer torques induced by triplet supercurrents. In contrast, this phenomenon is absent in ferromagnet/superconductor (F/S) bilayers and superconductor/insulator/ferromagnet/superconductor (S/I/F/S) multilayers where no supercurrents pass through the ferromagnetic layer. These experimental observations are discussed with theoretical predictions for ferromagnetic Josephson junctions with precessing magnetization.
Using a prototype model for proximity induced superconductivity on a bilayer square lattice, we show that interlayer tunneling can drive change in topology of the Bogoliubov quasiparticle bands. Starting with topologically trivial superconductors, tr ansitions to a non-trivial $p_x + {rm i} p_y$ state and back to another trivial state are discovered. We characterize these phases in terms of edge-state spectra and Chern indices. We show that these transitions can also be controlled by experimentally viable control parameters, the bandwidth of the metallic layer and the gate potential. Insights from our results on a simple model for proximity induced superconductivity may open up a new route to discover topological superconductors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا