ﻻ يوجد ملخص باللغة العربية
In this paper, we prove a structure theorem for the infinite union of $n$-adic doubling measures via techniques which involve far numbers. Our approach extends the results of Wu in 1998, and as a by product, we also prove a classification result related to normal numbers.
In this paper, we prove a sharp Meis Lemma with assuming the bases of the underlying general dyadic grids are different. As a byproduct, we specify all the possible cases of adjacent general dyadic systems with different bases. The proofs have connections with certain number-theoretic properties.
Let G be the Tate module of a p-divisble group H over a perfect field k of characteristic p. A theorem of Scholze-Weinstein describes G (and therefore H itself) in terms of the Dieudonne module of H; more precisely, it describes G(C) for good semiper
We present a characterization of sets for which Cartwrights theorem holds true. The connection is discussed between these sets and sampling sets for entire functions of exponential type.
Let s be an integer greater than or equal to 2. A real number is simply normal to base s if in its base-s expansion every digit 0, 1, ..., s-1 occurs with the same frequency 1/s. Let X be the set of positive integers that are not perfect powers, henc
The Nevanlinna parametrization establishes a bijection between the class of all measures having a prescribed set of moments and the class of Pick functions. The fact that all measures constructed through the Nevanlinna parametrization have identical