ترغب بنشر مسار تعليمي؟ اضغط هنا

Radial Density Profile and Stability of Capillary Discharge Plasma Waveguides of Lengths up to 40 Centimeters

109   0   0.0 ( 0 )
 نشر من قبل Marlene Turner
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We measured the parameter reproducibility and radial electron density profile of capillary discharge waveguides with diameters of 650 um to 2 mm and lengths of 9 to 40 cm. To our knowledge, 40 cm is the longest discharge capillary plasma waveguide to date. This length is important for >= 10 GeV electron energy gain in a single laser driven plasma wakefield acceleration (LPA) stage. Evaluation of waveguide parameter variations showed that their focusing strength was stable and reproducible to <0.2% and their average on-axis plasma electron density to <1%. These variations explain only a small fraction of LPA electron bunch variations observed in experiments to date. Measurements of laser pulse centroid oscillations revealed that the radial channel profile rises faster than parabolic and are in excellent agreement with magneto-hydro-dynamic simulation results. We show that the effects of non-parabolic contributions on Gaussian pulse propagation were negligible when the pulse was approximately matched to the channel. However, they affected pulse propagation for a non-matched configuration in which the waveguide was used as a plasma telescope to change the focused laser pulse spot size.



قيم البحث

اقرأ أيضاً

A method of creating plasma channels with controllable depth and transverse profile for the guiding of short, high power laser pulses for efficient electron acceleration is proposed. The plasma channel produced by the hydrogen-filled capillary discha rge waveguide is modified by a ns-scale laser pulse, which heats the electrons near the capillary axis. This interaction creates a deeper plasma channel within the capillary discharge that evolves on a ns-time scale, allowing laser beams with smaller spot sizes than would otherwise be possible in the unmodified capillary discharge.
98 - K.V. Lotov 2016
Drive particle beams in linear or weakly nonlinear regimes of the plasma wakefield accelerator quickly reach a radial equilibrium with the wakefield, which is described in detail for the first time. The equilibrium beam state and self-consistent wake fields are obtained by combining analytical relationships, numerical integration, and first-principle simulations. In the equilibrium state, the beam density is strongly peaked near the axis, the beam radius is constant along the beam, and longitudinal variation of the focusing strength is balanced by varying beam emittance. The transverse momentum distribution of beam particles depends on the observation radius and is neither separable, nor Gaussian.
One of the most robust methods, demonstrated up to date, of accelerating electron beams by laser-plasma sources is the utilization of plasma channels generated by the capillary discharges. These channels, i.e., plasma columns with a minimum density a long the laser pulse propagation axis, may optically guide short laser pulses, thereby increasing the acceleration length, leading to a more efficient electron acceleration. Although the spatial structure of the installation is simple in principle, there may be some important effects caused by the open ends of the capillary, by the supplying channels etc., which require a detailed 3D modeling of the processes taking place in order to get a detailed understanding and improve the operation. However, the discharge plasma, being one of the most crucial components of the laser-plasma accelerator, is not simulated with the accuracy and resolution required to advance this promising technology. In the present work, such simulations are performed using the code MARPLE. First, the process of the capillary filling with a cold hydrogen before the discharge is fired, through the side supply channels is simulated. The main goal of this simulation is to get a spatial distribution of the filling gas in the region near the open ends of the capillary. A realistic geometry is used for this and the next stage simulations, including the insulators, the supplying channels as well as the electrodes. Second, the simulation of the capillary discharge is performed with the goal to obtain a time-dependent spatial distribution of the electron density near the open ends of the capillary as well as inside the capillary. Finally, to evaluate effectiveness of the beam coupling with the channeling plasma wave guide and electron acceleration, modeling of laser-plasma interaction was performed with the code INF&RNO
The Numerical Advanced Model of Electron Cyclotron Resonance Ion Source (NAM-ECRIS) is applied for studies of the physical processes in the source. Solutions of separately operating electron and ion modules of NAM-ECRIS are matched in iterative way s uch as to obtain the spatial distributions of the plasma density and of the plasma potential. Results reveal the complicated profiles with the maximized plasma density close to the ECR surface and on the source axis. The ion-trapping potential dips are calculated to be on the level of ~(0.01-0.05) V being located at the plasma density maxima. The highly charged ions are also localized close to the ECR surface. The biased electrode effect is due to an electron string along the source axis formed by reflection of electrons from the biased electrode and the extraction aperture. The string makes profiles of the highly charged ions more peaked on the source axis, thus increasing the extracted ion currents.
High density ($.3 < bar{n}/10^{20}{rm m^{-3}} < .8$), low $q_a$ ($1.9<q_a<3.4$), Ohmic discharges from the ASDEX experiment is analysed statistically. Bulk parameter scalings and parameterised temperature and density profile shapes are presented. T he total plasma kinetic energy, assuming $T_i=T_e$, scales as $bar{n}^{ .54pm .01} {I_p}^{.90pm .04 } $ and is almost independent of $B_t$. The electron temperature profile peaking factor scales as ${T_0^{3/2}/<T^{3/2}>} = .94(pm.04){q_a}^{1.07pm.04}$ in close agreement with the assumption of classical resistive equilibrium. In the inner half of the plasma, the inverse fall-off length for both temperature and density has a strong dependence on $q_a$, with the temperature dependence being more pronounced. Outside the half radius, the $q_a$ dependence disappears but the density profile broadens near the edge with increasing plasma current.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا