ﻻ يوجد ملخص باللغة العربية
With the end goal of selecting and using diver detection models to support human-robot collaboration capabilities such as diver following, we thoroughly analyze a large set of deep neural networks for diver detection. We begin by producing a dataset of approximately 105,000 annotated images of divers sourced from videos -- one of the largest and most varied diver detection datasets ever created. Using this dataset, we train a variety of state-of-the-art deep neural networks for object detection, including SSD with Mobilenet, Faster R-CNN, and YOLO. Along with these single-frame detectors, we also train networks designed for detection of objects in a video stream, using temporal information as well as single-frame image information. We evaluate these networks on typical accuracy and efficiency metrics, as well as on the temporal stability of their detections. Finally, we analyze the failures of these detectors, pointing out the most common scenarios of failure. Based on our results, we recommend SSDs or Tiny-YOLOv4 for real-time applications on robots and recommend further investigation of video object detection methods.
Data augmentation is a key component of CNN based image recognition tasks like object detection. However, it is relatively less explored for 3D object detection. Many standard 2D object detection data augmentation techniques do not extend to 3D box.
Estimating the 3D position and orientation of objects in the environment with a single RGB camera is a critical and challenging task for low-cost urban autonomous driving and mobile robots. Most of the existing algorithms are based on the geometric c
Fully convolutional deep correlation networks are integral components of state-of the-art approaches to single object visual tracking. It is commonly assumed that these networks perform tracking by detection by matching features of the object instanc
In this article we present a novel underwater dataset collected from several field trials within the EU FP7 project Cognitive autonomous diving buddy (CADDY), where an Autonomous Underwater Vehicle (AUV) was used to interact with divers and monitor t
When producing a model to object detection in a specific context, the first obstacle is to have a dataset labeling the desired classes. In RoboCup, some leagues already have more than one dataset to train and evaluate a model. However, in the Small S