ترغب بنشر مسار تعليمي؟ اضغط هنا

Swift Multiwavelength Follow-up of LVC S200224ca and the Implications for Binary Black Hole Mergers

126   0   0.0 ( 0 )
 نشر من قبل Noel Klingler
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

On 2020 February 24, during their third observing run (O3), the Laser Interferometer Gravitational-wave Observatory and Virgo Collaboration (LVC) detected S200224ca: a candidate gravitational wave (GW) event produced by a binary black hole (BBH) merger. This event was one of the best-localized compact binary coalescences detected in O3 (with 50%/90% error regions of 13/72 deg$^2$), and so the Neil Gehrels Swift Observatory performed rapid near-UV/X-ray follow-up observations. Swift-XRT and UVOT covered approximately 79.2% and 62.4% (respectively) of the GW error region, making S200224ca the BBH event most thoroughly followed-up in near-UV (u-band) and X-ray to date. No likely EM counterparts to the GW event were found by the Swift BAT, XRT, or UVOT, nor by other observatories. Here we report on the results of our searches for an EM counterpart, both in the BAT data near the time of the merger, and in follow-up UVOT/XRT observations. We also discuss the upper limits we can place on EM radiation from S200224ca, and the implications these limits have on the physics of BBH mergers. Namely, we place a shallow upper limit on the dimensionless BH charge, $hat{q} < 1.4 times10^{-4}$, and an upper limit on the isotropic-equivalent energy of a blast wave $E < 4.1times10^{51}$ erg (assuming typical GRB parameters).



قيم البحث

اقرأ أيضاً

Fermi-Gamma-ray Burst Monitor observed a 1 s long gamma-ray signal (GW150914-GBM) starting 0.4 s after the first gravitational wave detection from the binary black hole merger GW150914. GW150914-GBM is consistent with a short gamma-ray burst origin; however, no unambiguous claims can be made as to the physical association of the two signals due to a combination of low gamma-ray flux and unfavorable location for Fermi-GBM. Here we answer the following question: if GW150914 and GW150914-GBM were associated, how many LIGO-Virgo binary black hole mergers would Fermi-GBM have to follow up to detect a second source? To answer this question, we perform simulated observations of binary black hole mergers with LIGO-Virgo and adopt different scenarios for gamma-ray emission from the literature. We calculate the ratio of simulated binary black hole mergers detected by LIGO-Virgo to the number of gamma-ray counterpart detections by Fermi-GBM, BBH-to-GRB ratio. A large majority of the models considered here predict a BBH-to-GRB ratio in the range of 5 to 20, but for optimistic cases can be as low as 2 or for pessimistic assumptions as high as 700. Hence we expect that the third observing run, with its high rate of binary black hole detections and assuming the absence of a joint detection, will provide strong constraints on the presented models.
LIGO and Virgos third observing run (O3) revealed the first neutron star-black hole (NSBH) merger candidates in gravitational waves. These events are predicted to synthesize r-process elements creating optical/near-IR kilonova (KN) emission. The join t gravitational-wave (GW) and electromagnetic detection of an NSBH merger could be used to constrain the equation of state of dense nuclear matter, and independently measure the local expansion rate of the universe. Here, we present the optical follow-up and analysis of two of the only three high-significance NSBH merger candidates detected to date, S200105ae and S200115j, with the Zwicky Transient Facility (ZTF). ZTF observed $sim$,48% of S200105ae and $sim$,22% of S200115js localization probabilities, with observations sensitive to KNe brighter than $-$17.5,mag fading at 0.5,mag/day in g- and r-bands; extensive searches and systematic follow-up of candidates did not yield a viable counterpart. We present state-of-the-art KN models tailored to NSBH systems that place constraints on the ejecta properties of these NSBH mergers. We show that with depths of $rm m_{rm AB}approx 22$ mag, attainable in meter-class, wide field-of-view survey instruments, strong constraints on ejecta mass are possible, with the potential to rule out low mass ratios, high BH spins, and large neutron star radii.
We recently discovered the X-ray/optical outbursting source 3XMM J215022.4-055108. It was best explained as the tidal disruption of a star by an intermediate-mass black hole of mass of a few tens of thousand solar masses in a massive star cluster at the outskirts of a large barred lenticular galaxy at D_L=247 Mpc. However, we could not completely rule out a Galactic cooling neutron star as an alternative explanation for the source. In order to further pin down the nature of the source, we have obtained new multiwavelength observations by XMM-Newton and Hubble Space Telescope (HST). The optical counterpart to the source in the new HST image is marginally resolved, which rules out the Galactic cooling neutron star explanation for the source and suggests a star cluster of half-light radius ~27 pc. The new XMM-Newton observation indicates that the luminosity was decaying as expected for a tidal disruption event and that the disk was still in the thermal state with a super-soft X-ray spectrum. Therefore, the new observations confirm the source as one of the best intermediate-mass black hole candidates.
Between 2011 March and 2014 August Swift responded to 20 triggers from the IceCube neutrino observatory, observing the IceCube 50% confidence error circle in X-rays, typically within 5 hours of the trigger. No confirmed counterpart has been detected. We describe the Swift follow up strategy and data analysis and present the results of the campaign. We discuss the challenges of distinguishing the X-ray counterpart to a neutrino trigger from serendipitous uncatalogued X-ray sources in the error circle, and consider the implications of our results for future strategies for multi-messenger astronomy, with particular reference to the follow up of gravitational wave triggers from the advanced-era detectors.
Motivated by the recent discovery of the binary neutron-star (BNS) merger GW170817, we determine the optimal observational setup for detecting and characterizing radio counterparts of nearby ($d_Lsim40$,Mpc) BNS mergers. We simulate GW170817-like rad io transients, and radio afterglows generated by fast jets with isotropic energy $E_{rm iso}sim 10^{50}$,erg, expanding in a low-density interstellar medium (ISM; $n_{rm ISM}=10^{-4}-10^{-2}$,cm$^{-3}$), observed from different viewing angles (from slightly off-axis to largely off-axis). We then determine the optimal timing of GHz radio observations following the precise localization of the BNS radio counterpart candidate, assuming a sensitivity comparable to that of the Karl G. Jansky Very Large Array. The optimization is done so as to ensure that properties such as viewing angle and circumstellar density can be correctly reconstructed with the minimum number of observations. We show that radio is the optimal band to explore the fastest ejecta from BNSs in low-density ISM, since the optical emission is likelyto be dominated by the so-called `kilonova component, while X-rays from the jet are detectable only for a small subset of the BNS models considered here. Finally, we discuss how future radio arrays like the next generation VLA (ngVLA) would improve the detectability of BNS mergers with physical parameters similar to the ones here explored.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا