ﻻ يوجد ملخص باللغة العربية
In the current version of QCD the quarks are described by ordinary Dirac fields, organized in the following internal symmetry multiplets: the $SU(3)$ colour, the $SU(2)$ flavour, and broken $SU(3)$ providing the family triplets. oindent In this paper we argue that internal and external (i.e. space-time) symmetries are entangled at least in the colour sector in order to introduce the spinorial quark fields in a way providing all the internal quarks degrees of freedom which do appear in the Standard Model. Because the $SU(3)$ colour algebra is endowed with natural $Z_3$-graded discrete automorphisms, in order to introduce entanglement the $Z_3$-graded version of Lorentz and Poincare algebras with their realizations are considered. The colour multiplets of quarks are described by $12$-component colour Dirac equations, with a $Z_3$-graded triplet of masses (one real and a Lee-Wick complex conjugate pair). We argue that all quarks in the Standard Model can be described by the $72$-component master quark sextet of $12$-component coloured Dirac fields.
We investigate certain $Z_3$-graded associative algebras with cubic $Z_3$-invariant constitutive relations. The invariant forms on finite algebras of this type are given in the low dimensional cases with two or three generators. We show how the Lor
We propose a modification of standard QCD description of the colour triplet of quarks describing quark fields endowed with colour degree of freedom by introducing a 12-component colour generalization of Dirac spinor, with built-in Z_3 grading playing
Colour $SU(3)$ group is an exact symmetry of Quantum Chromodynamics, which describes strong interactions between quarks and gluons. Supplemented by two internal symmetries, $SU(2)$ and $U(1)$, it serves as the internal symmetry of the Standard Model,
We show that the Lorentz and the SU(3) groups can be derived from the covariance principle conserving a $Z_3$-graded three-form on a $Z_3$-graded cubic algebra representing quarks endowed with non-standard commutation laws.
We construct firstly the complete list of five quantum deformations of $D=4$ complex homogeneous orthogonal Lie algebra $mathfrak{o}(4;mathbb{C})cong mathfrak{o}(3;mathbb{C})oplus mathfrak{o}(3;mathbb{C})$, describing quantum rotational symmetry of f