ﻻ يوجد ملخص باللغة العربية
We present quasi-simultaneous radio, (sub-)millimetre, and X-ray observations of the Galactic black hole X-ray binary GX 339-4, taken during its 2017--2018 outburst, where the source remained in the hard X-ray spectral state. During this outburst, GX 339-4 showed no atypical X-ray behaviour that may act as a indicator for an outburst remaining within the hard state. However, quasi-simultaneous radio and X-ray observations showed a flatter than expected coupling between the radio and X-ray luminosities (with a best fit relation of $L_{rm radio} propto L_{rm X}^{0.39 pm 0.06}$), when compared to successful outbursts from this system ($L_{rm radio} propto L_{rm X}^{0.62 pm 0.02}$). While our 2017--2018 outburst data only span a limited radio and X-ray luminosity range ($sim$1 order of magnitude in both, where more than 2-orders of magnitude in $L_{rm X}$ is desired), including data from other hard-only outbursts from GX 339-4 extends the luminosity range to $sim$1.2 and $sim$2.8 orders of magnitude, respectively, and also results in a flatter correlation (where $L_{rm radio} propto L_{rm X}^{0.46 pm 0.04}$). This result is suggestive that for GX 339-4 a flatter radio -- X-ray correlation, implying a more inefficient coupling between the jet and accretion flow, could act as an indicator for a hard-only outburst. However, further monitoring of both successful and hard-only outbursts over larger luminosity ranges with strictly simultaneous radio and X-ray observations is required from different, single sources, to explore if this applies generally to the population of black hole X-ray binaries, or even GX 339-4 at higher hard-state luminosities.
The microquasar GX 339-4 was observed by Suzaku five times, spaced by a few days, during its transition back to the hard state at the end of its 2010-2011 outburst. The 2-10 keV source flux decreases by a factor ~10 between the beginning and the end
We use simultaneous Swift and RXTE observations of the black hole binary GX 339-4 to measure the inner radius of its accretion disk in the hard state down to 0.4% L_{Edd} via modeling of the thermal disk emission and the relativistically broadened ir
We present an analysis of NuSTAR observations of a hard intermediate state of the transient black hole GX 339-4 taken in January 2015. As the source softened significantly over the course of the 1.3 d-long observation we split the data into 21 sub-se
X-ray and near-infrared ($J$-$H$-$K_{rm s}$) observations of the Galactic black hole binary GX 339--4 in the low/hard state were performed with Suzaku and IRSF in 2009 March. The spectrum in the 0.5--300 keV band is dominated by thermal Comptonizatio
We analyze eleven NuSTAR and Swift observations of the black hole X-ray binary GX 339-4 in the hard state, six of which were taken during the end of the 2015 outburst, five during a failed outburst in 2013. These observations cover luminosities from