ترغب بنشر مسار تعليمي؟ اضغط هنا

Long-time behaviour of a model for p62-ubiquitin aggregation in cellular autophagy

27   0   0.0 ( 0 )
 نشر من قبل Christian Schmeiser
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The qualitative behavior of a recently formulated ODE model for the dynamics of heterogenous aggregates is analyzed. Aggregates contain two types of particles, oligomers and cross-linkers. The motivation is a preparatory step of cellular autophagy, the aggregation of oligomers of the protein p62 in the presence of ubiquitin cross-linkers. A combination of explicit computations, formal asymptotics, and numerical simulations has led to conjectures on the bifurcation behavior, certain aspects of which are proven rigorously in this work. In particular, the stability of the zero state, where the model has a smoothness deficit is analyzed by a combination of regularizing transformations and blow-up techniques. On the other hand, in a different parameter regime, the existence of polynomially growing solutions is shown by Poincare compactification, combined with a singular perturbation analysis .

قيم البحث

اقرأ أيضاً

Aggregation of ubiquitinated cargo by oligomers of the protein p62 is an important preparatory step in cellular autophagy. In this work a mathematical model for the dynamics of these heterogeneous aggregates in the form of a system of ordinary differ ential equations is derived and analyzed. Three different parameter regimes are identified, where either aggregates are unstable, or their size saturates at a finite value, or their size grows indefinitely as long as free particles are abundant. The boundaries of these regimes as well as the finite size in the second case can be computed explicitly. The growth in the third case (quadratic in time) can also be made explicit by formal asymptotic methods. The qualitative results are illustrated by numerical simulations. A comparison with recent experimental results permits a partial parametrization of the model.
108 - Ciprian G. Gal 2013
We investigate the long term behavior in terms of global attractors, as time goes to infinity, of solutions to a continuum model for biological aggregations in which individuals experience long-range social attraction and short range dispersal. We co nsider the aggregation equation with both degenerate and non-degenerate diffusion in a bounded domain subject to various boundary conditions. In the degenerate case, we prove the existence of the global attractor and derive some optimal regularity results. Furthermore, in the non-degenerate case we give a complete structural characterization of the global attractor, and also discuss the convergence of any bounded solutions to steady states. Finally, the existence of an exponential attractor is also demonstrated for sufficiently smooth kernels in the case of non-degenerate diffusion.
We give a complete study of the asymptotic behavior of a simple model of alignment of unit vectors, both at the level of particles , which corresponds to a system of coupled differential equations, and at the continuum level, under the form of an agg regation equation on the sphere. We prove unconditional convergence towards an aligned asymptotic state. In the cases of the differential system and of symmetric initial data for the partial differential equation, we provide precise rates of convergence.
We consider a continuous-space and continuous-time diffusion process under resetting with memory. A particle resets to a position chosen from its trajectory in the past according to a memory kernel. Depending on the form of the memory kernel, we show analytically how different asymptotic behaviours of the variance of the particle position emerge at long times. These range from standard diffusive ($sigma^2 sim t$) all the way to anomalous ultraslow growth $sigma^2 sim ln ln t$.
158 - Fabien Givors 2010
We define a new transfinite time model of computation, infinite time cellular automata. The model is shown to be as powerful than infinite time Turing machines, both on finite and infinite inputs; thus inheriting many of its properties. We then show how to simulate the canonical real computation model, BSS machines, with infinite time cellular automata in exactly omega steps.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا